Skip to main content

Treatment of Heart Disease: Use of Transdifferentiation Methodology for Reprogramming Adult Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 2

Abstract

Despite significant progress in medical research, cardiovascular diseases (CVDs) continue to be the largest contributors to morbidity and mortality in both developed and developing countries. The discovery of multipotent cell populations in adult tissues has opened up new therapeutic possibilities for diseases that cannot be successfully treated by conventional medical therapies. The scientific community is developing new methods to improve clinical outcomes, including the transplantation of stem cells in a pre-differentiated state. In vivo studies have demonstrated the capacity of these cells to differentiate into another cell type through the triggering of a genetic switch by pathological or inductive conditions. This process, whereby one cell type committed to and progressing along a specific developmental lineage switches into another cell type of a different lineage, is designated transdifferentiation and takes place in tissues generated from neighbouring regions during normal embryonic development. In this chapter, we review the current methods of transdifferentiation including guided cardiopoiesis, cellular extracts, co-culture techniques, viral vectors, hyperpolarization, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77

    Article  PubMed  CAS  Google Scholar 

  • Behfar A, Terzic A (2007) Cardioprotective repair through stem cell-based cardiopoiesis. J Appl Physiol 103:1438–1440

    Article  PubMed  Google Scholar 

  • Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45(4):523–529

    Article  PubMed  CAS  Google Scholar 

  • Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56(9):721–734

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  • Burke DZ, Tosh D (2005) Therapeutic Potential of transdifferentiated cells. Science 108:309–321

    CAS  Google Scholar 

  • Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH, Martin GR, Zaret KS (2006) An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell 11:339–348

    Article  PubMed  CAS  Google Scholar 

  • Chien KR, Domian IJ, Parker KK (2008) Cardiogenesis and the Complex Biology of Regenerative Cardiovascular Medicine. Science 322(5907):1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Christman JK (2002) 5-azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  PubMed  CAS  Google Scholar 

  • Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222

    Article  PubMed  CAS  Google Scholar 

  • Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427

    Article  PubMed  CAS  Google Scholar 

  • Håkelien AM, Landsverk HB, Robl JM, Skålhegg BS, Collas P (2002) Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol. 20:460–466

    Article  PubMed  Google Scholar 

  • Hung LY, Kawase Y, Yoneyama R, Hajjar R (2007) Review: gene therapy in the treatment of heart failure. Physiology 22:81–96

    Article  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  PubMed  CAS  Google Scholar 

  • Kauser K, Zeiher AM, Schuleri KH, Boyle AJ, Hare JM (2007) Mesenchymal stem cells for cardiac regenerative therapy. HEP 180:195–218

    Google Scholar 

  • Koyanagi M, Urbich C, Chavakis E, Hoffmann J, Rupp S, Badorff C, Zeiher AM, Starzinski-Powitz A, Haendeler J, Dimmeler S (2005) Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin. FEBS Lett 579:6060–6066

    Article  PubMed  CAS  Google Scholar 

  • McMahon JM, Conroy S, Lyons M, Greiser U, O’Shea C, Strappe P, Howard L, Murphy M, Barry F, O’Brien T (2006) Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 15:87–96

    Article  PubMed  CAS  Google Scholar 

  • Moore KL, Persaud TVN (2000) Embriología Clínica en el desarrollo del ser humano. Ed. Panamericana, Madrid, Spain, pp. 511–521

    Google Scholar 

  • Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y, Yagihara T, Kitamura S, Nagaya N (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374:11–16

    Article  PubMed  CAS  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Ann Rev Biomed Engineer 12(1):87–117

    Article  CAS  Google Scholar 

  • Pasek M, Brette F, Nelson A, Pearce C, Qaiser A, Christe G, Orchard CH (2008) Quantification of t- tubule area and protein distribution in rat cardiac ventricular myocytes. Prog Biophys Mol Biol 6:244–257

    Article  Google Scholar 

  • Perán M, Marchal JA, López E, Jiménez-Navarro M, Boulaiz H, Rodríguez- Serrano F, Carrillo E, Sanchez-Espin G, De Teresa E, Tosh D, Aránega A (2010) Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes, Cytotherapy 12:332–337

    Article  PubMed  Google Scholar 

  • Perán M, Sánchez-Ferrero A, Tosh D, Marchal JA, López E, Alvarez P, Boulaiz H, Rodríguez-Serrano F, Aránega A (2011) Ultrastructural and molecular analyzes of insulin-producing cells induced from human hepatoma cells. Cytotherapy 13(2):193–200

    Article  PubMed  Google Scholar 

  • Pérez Romero C, Martín JJ, López del Amo, González MP, Miranda Serrano B, Burgos Rodríguez R, Alonso Gil M (2010) Costes basados en actividades de los programas de trasplantes de riñón, hígado y corazón en siete hospitales españoles. Escuela Andaluza de Salud Pública. <http://www.fundacionsigno.com>. Accessed: 19 de Abril de 2010

  • Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK, Sheval EV, Polyakov VY, Sukhikh GT, Zorov, DB. (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12(5A):1622–1631

    Article  PubMed  CAS  Google Scholar 

  • Rangappa S, Entwistle JW, Wechsler AS, Kresh JY (2003a) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126:124–132

    Article  PubMed  CAS  Google Scholar 

  • Rangappa S, Fen C, Lee EH, Bongso A, Wei ES (2003b) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  • Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE, Koch, WJ. (2009) Myocardial Adeno-Associated Virus Serotype 6-{beta}ARKct Gene Therapy Improves Cardiac Function and Normalizes the Neurohormonal Axis in Chronic Heart Failure. Circulation 119:89–98

    Article  PubMed  CAS  Google Scholar 

  • Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49

    Article  PubMed  CAS  Google Scholar 

  • Smits AM, Van, Vliet P, Metz CH, Korfage T, Sluijter, JPG, Doevendans PA, Goumans MJ (2009) Human Cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4:232–243

    Article  PubMed  CAS  Google Scholar 

  • Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18(9):980–982

    PubMed  CAS  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2008) Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3(11):e3737

    Article  PubMed  Google Scholar 

  • Torella D, Ellison GM, Karakikes I, Nadal-Ginard B (2007) Growth-factor-mediated cardiac stem cell activation in myocardial regeneration. Nat Clin Pract Cardiovasc Med 4:S46–S51

    Article  PubMed  Google Scholar 

  • Tosh D, Slack JM (2002) How cells change their phenotype. Nature Rev Mol Cell Biol 3:187–194

    Article  CAS  Google Scholar 

  • Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR, Cohen IS (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555:617–626

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet P, De Boer TP, Van der Heyden MAG, El Tamer MK, Sluijter JPG, Doevendans PA, Goumans MJ (2010) Hyperpolarization induces differentiation in human cardiomyocyte progenitor cells. Stem Cell Rev Rep 6:178–185

    Article  Google Scholar 

  • Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  PubMed  CAS  Google Scholar 

  • Xue JJ, Wang YS, Ma H, Hu Y, Cheng KL. (2010) Effects of a recombinant adenovirus expressing human hypoxia-inducible factor 1α double-mutant on the in vitro differentiation of bone marrow mesenchymal stem cells to cardiomyocytes. Zhonghua Xin Xue Guan Bing Za Zhi 38(7):638–643

    PubMed  CAS  Google Scholar 

  • Yamada Y, Sakurada K, Takeda Y, Gojo Z, Umezawa A (2007) Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Exp Cell Res 313(4):698–706

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Ma Q, Rajapoal S, Qing M, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, Von Gise A, Ikeda S, Chien K, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Aránega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bustamante, M., Perán, M., Marchal, J.A., Rodríguez-Serrano, F., Álvarez, P., Aránega, A. (2012). Treatment of Heart Disease: Use of Transdifferentiation Methodology for Reprogramming Adult Stem Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_18

Download citation

Publish with us

Policies and ethics