Skip to main content

Mechanical Stretch and Cytokine Synthesis in Pulmonary Endothelial Cells

  • Chapter
  • First Online:
Mechanical Stretch and Cytokines

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 5))

  • 694 Accesses

Abstract

The respiratory system is dynamically exposed to physical forces derived from tidal breathing and blood flow. These physical forces are important for maintaining homeostasis of the respiratory system and normal lung development in vivo. In contrast, excessive mechanical forces lead to the pathogenesis of pulmonary diseases. Pulmonary endothelial cells serve as a barrier that regulates fluid balance and inflammatory cell accumulation in the lung. The functions of pulmonary endothelial cells are significantly affected by mechanical stimuli such as shear stress and mechanical stretch. For example, pulmonary endothelial cells produce cytokines/chemokines and nitric oxide in response to mechanical stimuli. The mechanotransduction pathways for mechanical force transmission into the intracellular signals are through mechanosensitive ion channels, integrins, actin cytoskeleton, and activation of mitogen-activated protein-kinases. Alterations in pulmonary endothelial cell properties due to excessive mechanical stress are suggested to play an important role in the disease progression of lung injury and inflammation. This chapter focuses on recent evidence regarding regulation of mechanical stress-induced cytokine/chemokine production by pulmonary endothelial cells and the role of pulmonary endothelial cells in the pathogenesis of pulmonary diseases related to mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALI:

acute lung injury

ARDS:

acute respiratory distress syndrome

[Ca2+]I :

intracellular Ca2+ concentration

COPD:

chronic obstructive pulmonary disease

DAD:

diffuse alveolar damage

EC:

endothelial cell

ECM:

extracellular matrix

ELISA:

enzyme-linked immunosorbent assay

eNOS:

endothelial cell nitric oxide synthase

EPC:

endothelial progenitor cell

ERK:

extracellular signal-regulated kinase

GM-CSF:

granulocyte/macrophage colony stimulating factor

HUVEC:

human umbilical vein endothelial cell

IL:

interleukin

JNK:

c-Jun NH2-terminal kinase

LPS:

lipopolysaccharide

LVRS:

lung volume reduction surgery

MAP-kinase:

mitogen-activated protein-kinase

MCP-1:

monocyte chemoattractant protein-1

NO:

nitric oxide

PECAM-1:

platelet/endothelial cell adhesion molecule-1

TNF-α:

tumor necrosis factor-α

TRP:

transient receptor potential

VEGF:

vascular endothelial growth factor

VILI:

ventilator-induced lung injury

References

  • Adkison JB, Miller GT, Weber DS, Miyahara T, Ballard ST, Frost JR, Parker JC (2006) Differential responses of pulmonary endothelial phenotypes to cyclical stretch. Microvasc Res 71:175–184

    PubMed  CAS  Google Scholar 

  • Aird WC (2007a) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    PubMed  CAS  Google Scholar 

  • Aird WC (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190

    PubMed  CAS  Google Scholar 

  • Al-Mehdi AB, Song C, Tozawa K, Fisher AB (2000) Ca2+- and phosphatidylinositol 3-kinase-dependent nitric oxide generation in lung endothelial cells in situ with ischemia. J Biol Chem 275:39807–39810

    PubMed  CAS  Google Scholar 

  • Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30:S198–S206

    PubMed  CAS  Google Scholar 

  • Ali MH, Mungai PT, Schumacker PT (2006) Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol 291:L38–L45

    PubMed  CAS  Google Scholar 

  • Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995

    PubMed  CAS  Google Scholar 

  • Alvarez DF, Huang L, King JA, Elzarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:L419–L430

    PubMed  CAS  Google Scholar 

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    PubMed  CAS  Google Scholar 

  • ARDSnet (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Google Scholar 

  • Arold SP, Bartolak-Suki E, Suki B (2009) Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am J Physiol Lung Cell Mol Physiol 296:L574–L581

    PubMed  CAS  Google Scholar 

  • Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American-European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am J Respir Crit Care Med 157:1332–1347

    PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323

    PubMed  CAS  Google Scholar 

  • Awolesi MA, Sessa WC, Sumpio BE (1995) Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96:1449–1454

    PubMed  CAS  Google Scholar 

  • Azuma N, Akasaka N, Kito H, Ikeda M, Gahtan V, Sasajima T, Sumpio BE (2001) Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am J Physiol Heart Circ Physiol 280:H189–H197

    PubMed  CAS  Google Scholar 

  • Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343:269–280

    PubMed  CAS  Google Scholar 

  • Beck GC, Yard BA, Breedijk AJ, Van Ackern K, Van Der Woude FJ (1999) Release of CXC-chemokines by human lung microvascular endothelial cells (LMVEC) compared with macrovascular umbilical vein endothelial cells. Clin Exp Immunol 118:298–303

    PubMed  CAS  Google Scholar 

  • Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  • Birukov KG, Birukova AA, Dudek SM, Verin AD, Crow MT, Zhan X, Depaola N, Garcia JG (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 26:453–464

    PubMed  CAS  Google Scholar 

  • Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285:L785–L797

    PubMed  CAS  Google Scholar 

  • Blackwell TS, Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17:3–9

    PubMed  CAS  Google Scholar 

  • Boriek AM, Kumar A (2008) Regulation of intracellular signal transduction pathways by mechanosensitive ion channels. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues No 1. Mechanosensitive ion channels. Springer, New York, NY, pp 303–327

    Google Scholar 

  • Brantigan OC, Mueller E (1957) Surgical treatment of pulmonary emphysema. Am Surg 23:789–804

    PubMed  CAS  Google Scholar 

  • Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41

    PubMed  CAS  Google Scholar 

  • Burg J, Krump-Konvalinkova V, Bittinger F, Kirkpatrick CJ (2002) GM-CSF expression by human lung microvascular endothelial cells: in vitro and in vivo findings. Am J Physiol Lung Cell Mol Physiol 283:L460–L467

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  • Cavalcante FS, Ito S, Brewer K, Sakai H, Alencar AM, Almeida MP, Andrade JS Jr, Majumdar A, Ingenito EP, Suki B (2005) Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J Appl Physiol 98:672–679

    PubMed  CAS  Google Scholar 

  • Chander A, Fisher AB (1990) Regulation of lung surfactant secretion. Am J Physiol 258:L241–L253

    PubMed  CAS  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    PubMed  CAS  Google Scholar 

  • Cochrane CG, Spragg R, Revak SD (1983a) Pathogenesis of the adult respiratory distress syndrome. Evidence of oxidant activity in bronchoalveolar lavage fluid. J Clin Invest 71:754–761

    PubMed  CAS  Google Scholar 

  • Cochrane CG, Spragg RG, Revak SD, Cohen AB, Mcguire WW (1983b) The presence of neutrophil elastase and evidence of oxidation activity in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Respir Dis 127:S25–S27

    PubMed  CAS  Google Scholar 

  • Cohen TS, Gray Lawrence G, Khasgiwala A, Margulies SS (2010) MAPK activation modulates permeability of isolated rat alveolar epithelial cell monolayers following cyclic stretch. PLoS One 5:e10385

    PubMed  Google Scholar 

  • Cooper JD, Trulock EP, Triantafillou AN, Patterson GA, Pohl MS, Deloney PA, Sundaresan RS, Roper CL (1995) Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 109:106–116; discussion 116–109

    PubMed  CAS  Google Scholar 

  • Copland IB, Post M (2007) Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol 210:133–143

    PubMed  CAS  Google Scholar 

  • Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360:2445–2454

    PubMed  CAS  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    PubMed  CAS  Google Scholar 

  • Denney MK, Glas WW (1964) Experimental studies in barotrauma. J Trauma 4:791–796

    PubMed  CAS  Google Scholar 

  • Dobler CC, Wong KK, Marks GB (2009) Associations between statins and COPD: a systematic review. BMC Pulm Med 9:32

    PubMed  Google Scholar 

  • Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, Grant IS, Pollok AJ, Haslett C (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647

    PubMed  CAS  Google Scholar 

  • Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655

    PubMed  CAS  Google Scholar 

  • Dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68:585–618

    PubMed  CAS  Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  • Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  • Fowler AA, Hyers TM, Fisher BJ, Bechard DE, Centor RM, Webster RO (1987) The adult respiratory distress syndrome. Cell populations and soluble mediators in the air spaces of patients at high risk. Am Rev Respir Dis 136:1225–1231

    PubMed  CAS  Google Scholar 

  • Frangos JA, Eskin SG, Mcintire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    PubMed  CAS  Google Scholar 

  • Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2419

    PubMed  CAS  Google Scholar 

  • Frye SR, Yee A, Eskin SG, Guerra R, Cong X, Mcintire LV (2005) cDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol Genomics 21:124–130

    PubMed  CAS  Google Scholar 

  • Garcia JG, Schaphorst KL, Shi S, Verin AD, Hart CM, Callahan KS, Patterson CE (1997) Mechanisms of ionomycin-induced endothelial cell barrier dysfunction. Am J Physiol 273:L172–L184

    PubMed  CAS  Google Scholar 

  • Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  • Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47:15s–25s

    PubMed  CAS  Google Scholar 

  • Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68:1–12

    PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110:139–142

    PubMed  CAS  Google Scholar 

  • Gelb AF, Mckenna RJ Jr, Brenner M, Epstein JD, Zamel N (2001) Lung function 5 yr after lung volume reduction surgery for emphysema. Am J Respir Crit Care Med 163:1562–1566

    PubMed  CAS  Google Scholar 

  • Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154:602–611

    PubMed  CAS  Google Scholar 

  • Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Harding R, Hooper SB (1996) Regulation of lung expansion and lung growth before birth. J Appl Physiol 81:209–224

    PubMed  CAS  Google Scholar 

  • Harris WH, Chillingworth FP (1919) The experimental production in dogs of emphysema with associated asthmatic syndrome by means of an intratracheal ball valve. J Exp Med 30:75–85

    PubMed  CAS  Google Scholar 

  • Haseneen NA, Vaday GG, Zucker S, Foda HD (2003) Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 284:L541–L547

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Matsumoto K, Gon Y, Maruoka S, Takeshita I, Hayashi S, Koura T, Kujime K, Horie T (1999) p38 mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells. Eur Respir J 13:1357–1364

    PubMed  CAS  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503

    PubMed  CAS  Google Scholar 

  • Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M (2002) Multiple control of interleukin-8 gene expression. J Leukoc Biol 72:847–855

    PubMed  CAS  Google Scholar 

  • Idell S, Cohen AB (1985) Bronchoalveolar lavage in patients with the adult respiratory distress syndrome. Clin Chest Med 6:459–471

    PubMed  CAS  Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104(Pt 3):613–627

    PubMed  Google Scholar 

  • Ingenito EP, Evans RB, Loring SH, Kaczka DW, Rodenhouse JD, Body SC, Sugarbaker DJ, Mentzer SJ, Decamp MM, Reilly JJ Jr (1998) Relation between preoperative inspiratory lung resistance and the outcome of lung-volume-reduction surgery for emphysema. N Engl J Med 338:1181–1185

    PubMed  CAS  Google Scholar 

  • Ito S, Ingenito EP, Brewer KK, Black LD, Parameswaran H, Lutchen KR, Suki B (2005) Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling. J Appl Physiol 98:503–511

    PubMed  Google Scholar 

  • Ito S, Bartolak-Suki E, Shipley JM, Parameswaran H, Majumdar A, Suki B (2006a) Early emphysema in the tight skin and pallid mice: roles of microfibril-associated glycoproteins, collagen, and mechanical forces. Am J Respir Cell Mol Biol 34:688–694

    PubMed  CAS  Google Scholar 

  • Ito S, Kume H, Oguma T, Ito Y, Kondo M, Shimokata K, Suki B, Naruse K (2006b) Roles of stretch-activated cation channel and Rho-kinase in the spontaneous contraction of airway smooth muscle. Eur J Pharmacol 552:135–142

    PubMed  CAS  Google Scholar 

  • Ito S, Kume H, Naruse K, Kondo M, Takeda N, Iwata S, Hasegawa Y, Sokabe M (2008) A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:407–413

    PubMed  CAS  Google Scholar 

  • Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M (2010) Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43:26–34

    PubMed  CAS  Google Scholar 

  • Iwaki M, Ito S, Morioka M, Iwata S, Numaguchi Y, Ishii M, Kondo M, Kume H, Naruse K, Sokabe M, Hasegawa Y (2009) Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells. Biochem Biophys Res Commun 389:531–536

    PubMed  CAS  Google Scholar 

  • Jesudason R, Sato S, Parameswaran H, Araujo AD, Majumdar A, Allen PG, Bartolak-Suki E, Suki B (2010) Mechanical forces regulate elastase activity and binding site availability in lung elastin. Biophys J 99:3076–3083

    PubMed  CAS  Google Scholar 

  • Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38:386–392

    PubMed  CAS  Google Scholar 

  • Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF (2001) Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 163:737–744

    PubMed  CAS  Google Scholar 

  • Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102:15895–15900

    PubMed  CAS  Google Scholar 

  • Kawai M, Naruse K, Komatsu S, Kobayashi S, Nagino M, Nimura Y, Sokabe M (2002) Mechanical stress-dependent secretion of interleukin 6 by endothelial cells after portal vein embolization: clinical and experimental studies. J Hepatol 37:240–246

    PubMed  CAS  Google Scholar 

  • Kaynar AM, Houghton AM, Lum EH, Pitt BR, Shapiro SD (2008) Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am J Respir Cell Mol Biol 39:53–60

    PubMed  CAS  Google Scholar 

  • Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Annu Rev Biochem 66:785–805

    PubMed  CAS  Google Scholar 

  • King J, Hamil T, Creighton J, Wu S, Bhat P, Mcdonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67:139–151

    PubMed  CAS  Google Scholar 

  • Kito H, Chen EL, Wang X, Ikeda M, Azuma N, Nakajima N, Gahtan V, Sumpio BE (2000) Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. J Appl Physiol 89:2391–2400

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Nagino M, Komatsu S, Naruse K, Nimura Y, Nakanishi M, Sokabe M (2003) Stretch-induced IL-6 secretion from endothelial cells requires NF-kappaB activation. Biochem Biophys Res Commun 308:306–312

    PubMed  CAS  Google Scholar 

  • Kollef MH, Schuster DP (1995) The acute respiratory distress syndrome. N Engl J Med 332:27–37

    PubMed  CAS  Google Scholar 

  • Kosaki K, Ando J, Korenaga R, Kurokawa T, Kamiya A (1998) Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res 82:794–802

    PubMed  CAS  Google Scholar 

  • Kuchan MJ, Frangos JA (1993) Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 264:H150–H156

    PubMed  CAS  Google Scholar 

  • Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J (1999) Pressure is proinflammatory in lung venular capillaries. J Clin Invest 104:495–502

    PubMed  CAS  Google Scholar 

  • Kuebler WM, Uhlig U, Goldmann T, Schael G, Kerem A, Exner K, Martin C, Vollmer E, Uhlig S (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med 168:1391–1398

    PubMed  Google Scholar 

  • Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48:481–488

    PubMed  CAS  Google Scholar 

  • Lee CT, Fein AM, Lippmann M, Holtzman H, Kimbel P, Weinbaum G (1981) Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory-distress syndrome. N Engl J Med 304:192–196

    PubMed  CAS  Google Scholar 

  • Lee JH, Lee DS, Kim EK, Choe KH, Oh YM, Shim TS, Kim SE, Lee YS, Lee SD (2005) Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med 172:987–993

    PubMed  Google Scholar 

  • Li M, Scott DE, Shandas R, Stenmark KR, Tan W (2009) High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann Biomed Eng 37:1082–1092

    PubMed  CAS  Google Scholar 

  • Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084

    PubMed  CAS  Google Scholar 

  • Magee JC, Stone AE, Oldham KT, Guice KS (1994) Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am J Physiol 267:L433–L441

    PubMed  CAS  Google Scholar 

  • Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444

    PubMed  Google Scholar 

  • Matthay MA, Zimmerman GA (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33:319–327

    PubMed  CAS  Google Scholar 

  • Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL (2003) Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 167:1027–1035

    PubMed  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    PubMed  CAS  Google Scholar 

  • Meyers BF, Patterson GA (2003) Chronic obstructive pulmonary disease. 10: Bullectomy, lung volume reduction surgery, and transplantation for patients with chronic obstructive pulmonary disease. Thorax 58:634–638

    PubMed  CAS  Google Scholar 

  • Miller EJ, Cohen AB, Nagao S, Griffith D, Maunder RJ, Martin TR, Weiner-Kronish JP, Sticherling M, Christophers E, Matthay MA (1992) Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis 146:427–432

    PubMed  CAS  Google Scholar 

  • Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15:174–184

    PubMed  CAS  Google Scholar 

  • Moore SW, Roca-Cusachs P, Sheetz MP (2010) Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 19:194–206

    PubMed  CAS  Google Scholar 

  • Mukaida N (2003) Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 284:L566–L577

    PubMed  CAS  Google Scholar 

  • Mulligan MS, Polley MJ, Bayer RJ, Nunn MF, Paulson JC, Ward PA (1992) Neutrophil-dependent acute lung injury. Requirement for P-selectin (GMP-140. J Clin Invest 90:1600–1607

    PubMed  CAS  Google Scholar 

  • Nana-Sinkam SP, Lee JD, Sotto-Santiago S, Stearman RS, Keith RL, Choudhury Q, Cool C, Parr J, Moore MD, Bull TM, Voelkel NF, Geraci MW (2007) Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med 175:676–685

    PubMed  CAS  Google Scholar 

  • Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Oeckler RA, Hubmayr RD (2007) Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J 30:1216–1226

    PubMed  CAS  Google Scholar 

  • Oeckler RA, Lee WY, Park MG, Kofler O, Rasmussen DL, Lee HB, Belete H, Walters BJ, Stroetz RW, Hubmayr RD (2010) Determinants of plasma membrane wounding by deforming stress. Am J Physiol Lung Cell Mol Physiol 299:L826–L833

    PubMed  CAS  Google Scholar 

  • Okada M, Matsumori A, Ono K, Furukawa Y, Shioi T, Iwasaki A, Matsushima K, Sasayama S (1998) Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 18:894–901

    PubMed  CAS  Google Scholar 

  • Oudin S, Pugin J (2002) Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. Am J Respir Cell Mol Biol 27:107–114

    PubMed  CAS  Google Scholar 

  • Palange P, Testa U, Huertas A, Calabro L, Antonucci R, Petrucci E, Pelosi E, Pasquini L, Satta A, Morici G, Vignola MA, Bonsignore MR (2006) Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J 27:529–541

    PubMed  CAS  Google Scholar 

  • Parker JC, Yoshikawa S (2002) Vascular segmental permeabilities at high peak inflation pressure in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol 283:L1203–L1209

    PubMed  CAS  Google Scholar 

  • Parker JC, Ivey CL, Tucker JA (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84:1113–1118

    PubMed  CAS  Google Scholar 

  • Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363

    PubMed  Google Scholar 

  • Pelosi P, Rocco PR (2008) Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med 34:631–639

    PubMed  CAS  Google Scholar 

  • Pinhu L, Whitehead T, Evans T, Griffiths M (2003) Ventilator-associated lung injury. Lancet 361:332–340

    PubMed  Google Scholar 

  • Pinhu L, Park JE, Yao W, Griffiths MJ (2008) Reference gene selection for real-time polymerase chain reaction in human lung cells subjected to cyclic mechanical strain. Respirology 13:990–999

    PubMed  Google Scholar 

  • Pittet JF, Mackersie RC, Martin TR, Matthay MA (1997) Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 155:1187–1205

    PubMed  CAS  Google Scholar 

  • Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050

    PubMed  CAS  Google Scholar 

  • Puneet P, Moochhala S, Bhatia M (2005) Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 288:L3–L15

    PubMed  CAS  Google Scholar 

  • Raaz U, Kuhn H, Wirtz H, Hammerschmidt S (2009) Rapamycin reduces high-amplitude, mechanical stretch-induced apoptosis in pulmonary microvascular endothelial cells. Microvasc Res 77:297–303

    PubMed  CAS  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, Van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    PubMed  Google Scholar 

  • Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    PubMed  CAS  Google Scholar 

  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    PubMed  CAS  Google Scholar 

  • Riley DJ, Rannels DE, Low RB, Jensen L, Jacobs TP (1990) NHLBI Workshop Summary. Effect of physical forces on lung structure, function, and metabolism. Am Rev Respir Dis 142:910–914

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149

    PubMed  CAS  Google Scholar 

  • Sanchez-Esteban J, Cicchiello LA, Wang Y, Tsai SW, Williams LK, Torday JS, Rubin LP (2001) Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol 91:589–595

    PubMed  CAS  Google Scholar 

  • Sasamoto A, Nagino M, Kobayashi S, Naruse K, Nimura Y, Sokabe M (2005) Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. Am J Physiol Cell Physiol 288:C1012–C1022

    PubMed  CAS  Google Scholar 

  • Shyy YJ, Hsieh HJ, Usami S, Chien S (1994) Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91:4678–4682

    PubMed  CAS  Google Scholar 

  • Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725

    PubMed  CAS  Google Scholar 

  • Sterpetti AV, Cucina A, Morena AR, Di Donna S, D’angelo LS, Cavalarro A, Stipa S (1993) Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery 114:911–914

    PubMed  CAS  Google Scholar 

  • Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR (2008) Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc 5:783–791

    PubMed  CAS  Google Scholar 

  • Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, Pesenti A, Guerin C, Mancebo J, Curley MA, Fernandez R, Chan MC, Beuret P, Voggenreiter G, Sud M, Tognoni G, Gattinoni L (2010a) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36:585–599

    PubMed  Google Scholar 

  • Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK (2010b) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327

    PubMed  Google Scholar 

  • Suki B, Alencar AM, Sujeer MK, Lutchen KR, Collins JJ, Andrade JS Jr, Ingenito EP, Zapperi S, Stanley HE (1998) Life-support system benefits from noise. Nature 393:127–128

    PubMed  CAS  Google Scholar 

  • Suki B, Lutchen KR, Ingenito EP (2003) On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med 168:516–521

    PubMed  Google Scholar 

  • Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol 98:1892–1899

    PubMed  Google Scholar 

  • Takahashi S, Nakamura H, Seki M, Shiraishi Y, Yamamoto M, Furuuchi M, Nakajima T, Tsujimura S, Shirahata T, Nakamura M, Minematsu N, Yamasaki M, Tateno H, Ishizaka A (2008) Reversal of elastase-induced pulmonary emphysema and promotion of alveolar epithelial cell proliferation by simvastatin in mice. Am J Physiol Lung Cell Mol Physiol 294:L882–L890

    PubMed  CAS  Google Scholar 

  • Tate RM, Repine JE (1983) Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis 128:552–559

    PubMed  CAS  Google Scholar 

  • Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    PubMed  CAS  Google Scholar 

  • Torday JS, Sanchez-Esteban J, Rubin LP (1998) Paracrine mediators of mechanotransduction in lung development. Am J Med Sci 316:205–208

    PubMed  CAS  Google Scholar 

  • Tschumperlin DJ, Drazen JM (2006) Chronic effects of mechanical force on airways. Annu Rev Physiol 68:563–583

    PubMed  CAS  Google Scholar 

  • Tschumperlin DJ, Margulies SS (1999) Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 86:2026–2033

    PubMed  CAS  Google Scholar 

  • Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362

    PubMed  CAS  Google Scholar 

  • Tseng H, Peterson TE, Berk BC (1995) Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res 77:869–878

    PubMed  CAS  Google Scholar 

  • Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143:1115–1120

    PubMed  CAS  Google Scholar 

  • Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269:C1371–C1378

    PubMed  CAS  Google Scholar 

  • Uhlig S, Uhlig U (2004) Pharmacological interventions in ventilator-induced lung injury. Trends Pharmacol Sci 25:592–600

    PubMed  CAS  Google Scholar 

  • Vlahakis NE, Hubmayr RD (2005) Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 171:1328–1342

    PubMed  Google Scholar 

  • Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173

    PubMed  CAS  Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    PubMed  CAS  Google Scholar 

  • Weaver TE, Whitsett JA (1991) Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J 273(Pt 2):249–264

    PubMed  CAS  Google Scholar 

  • West JB (1971) Distribution of mechanical stress in the lung, a possible factor in localisation of pulmonary disease. Lancet 1:839–841

    PubMed  CAS  Google Scholar 

  • West JB (2003) Thoughts on the pulmonary blood-gas barrier. Am J Physiol Lung Cell Mol Physiol 285:L501–L513

    PubMed  CAS  Google Scholar 

  • West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340:762–767

    PubMed  CAS  Google Scholar 

  • Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    PubMed  CAS  Google Scholar 

  • Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119:1–17

    PubMed  CAS  Google Scholar 

  • Wu S, Cioffi EA, Alvarez D, Sayner SL, Chen H, Cioffi DL, King J, Creighton JR, Townsley M, Goodman SR, Stevens T (2005) Essential role of a Ca2+-selective, store-operated current (ISOC) in endothelial cell permeability: determinants of the vascular leak site. Circ Res 96:856–863

    PubMed  CAS  Google Scholar 

  • Wung BS, Cheng JJ, Chao YJ, Lin J, Shyy YJ, Wang DL (1996) Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am J Physiol 270:H1462–H1468

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A, Ando J (2000) Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87:385–391

    PubMed  CAS  Google Scholar 

  • Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    PubMed  CAS  Google Scholar 

  • Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84:9233–9237

    PubMed  CAS  Google Scholar 

  • Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334

    PubMed  CAS  Google Scholar 

  • Zhao D, Keates AC, Kuhnt-Moore S, Moyer MP, Kelly CP, Pothoulakis C (2001) Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem 276:44464–44471

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (#19689017 and #22890837 to S.I.). We thank Dr. Béla Suki, Department of Biomedical Engineering, Boston University, for the helpful comments. We also thank Ms. Katherine Ono for providing language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ito, S., Hasegawa, Y. (2012). Mechanical Stretch and Cytokine Synthesis in Pulmonary Endothelial Cells. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_7

Download citation

Publish with us

Policies and ethics