Skip to main content

Cytokines, Heart and Calcium Current in Sepsis

  • Chapter
  • First Online:
Mechanical Stretch and Cytokines

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 5))

  • 675 Accesses

Abstract

Sepsis has been defined as the systemic host response to infection with an overwhelming systemic production of cytokines leading to generalized endothelial and epithelial damages, to the changes in immune and neuroendocrine systems and consequently to (multiple) organ dysfunction. The myocardial contractile performance is significantly impaired in severe sepsis and septic shock. In this review the major cytokines involved in the development of sepsis are characterized with special emphasis on cardiac function and on regulation of cardiac calcium current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    PubMed  CAS  Google Scholar 

  • Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 273:934–941

    PubMed  CAS  Google Scholar 

  • Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF, Kudsk K, Bruining HA, Otto C, Tobin E, Zwingelstein C, Lesslauer W, Leighton A (1997) p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 Study Group. JAMA 277:1531–1538

    PubMed  CAS  Google Scholar 

  • Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, Dal Nogare A, Nasraway S, Berman S, Cooney R, Levy H, Baughman R, Rumbak M, Light RB, Poole L, Allred R, Constant J, Pennington J, Porter S (1998) Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet 351:929–933

    PubMed  CAS  Google Scholar 

  • Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G (2010) The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 36:1286–1298

    PubMed  CAS  Google Scholar 

  • Alden KJ, Goldspink PH, Ruch SW, Buttrick PM, García J (2002) Enhancement of L-type Ca2+ current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII. Am J Physiol 282:C768–C774

    CAS  Google Scholar 

  • Alves-Filho JC, Sonego F, Souto O, Freitas F, Verri A, Auxiliadora-Martins A, Filho M, Mc Kenzie AB, Xu AN, D Q, Cunha F, Liew FY (2010) Interleukin–33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Med 16:703–712

    Google Scholar 

  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    PubMed  CAS  Google Scholar 

  • Benedict CR, Rose JA (1992) Arterial norepinephrine changes in patients with septic shock. Circ Shock 38:165–172

    PubMed  CAS  Google Scholar 

  • Benitah JP, Alvarez JL, Gómez AM (2010) L-type Ca2+ current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36

    PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    PubMed  CAS  Google Scholar 

  • Bocking JK, Sibbald WJ, Holliday RL, Scott S, Viidik T (1979) Plasma catecholamine levels and pulmonary dysfunction in sepsis. Surg Gynecol Obstet 148:715–719

    PubMed  CAS  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115:3306–3317

    PubMed  CAS  Google Scholar 

  • Böhm M, Kirchmayr R, Gierschik P, Erdmann E (1995) Increase of myocardial inhibitory G-proteins in catecholamine-refractory septic shock or in septic multiorgan failure. Am J Med 98:183–186

    PubMed  Google Scholar 

  • Cain BS, Meldrum DR, Dinarello CA, Meng X, Joo KS, Banerjee A, Harken AH (1999) Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med 27:1309–1318

    PubMed  CAS  Google Scholar 

  • Calaghan SC, Le Guennec JY, White E (2004) Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol 84:29–59

    PubMed  CAS  Google Scholar 

  • Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH, Schellekens J, Verhoef J, Glauser MP (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis 161:982–987

    PubMed  CAS  Google Scholar 

  • Carré JE, Singer M (2008) Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta 1777:763–771

    PubMed  Google Scholar 

  • Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G (1993) Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 178:2207–2211

    PubMed  CAS  Google Scholar 

  • Cohen RI, Wilson D, Liu SF (2006) Nitric oxide modifies the sarcoplasmic reticular calcium release channel in endotoxemia by both guanosine-3’,5’ (cyclic) phosphate-dependent and independent pathways. Crit Care Med 34:173–181

    PubMed  CAS  Google Scholar 

  • Court O, Kumar A, Parrillo JE, Kumar A (2002) Clinical review: Myocardial depression in sepsis and septic shock. Critical Care 6:500–508

    PubMed  Google Scholar 

  • Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    PubMed  CAS  Google Scholar 

  • Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    PubMed  CAS  Google Scholar 

  • Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17:975–978

    PubMed  CAS  Google Scholar 

  • Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, Lamy M (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215:356–362

    PubMed  CAS  Google Scholar 

  • de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174:915–924

    PubMed  Google Scholar 

  • Dong LW, Wu LL, Ji Y, Liu MS (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 16:33–39

    PubMed  CAS  Google Scholar 

  • Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, Hareng L, Hartung T, von Aulock S, Hermann C (2008) Cytokine induction by Gram-positive bacteria. Immunobiology 213:285–296

    PubMed  CAS  Google Scholar 

  • Durez P, Abramowicz D, Gérard C, Van Mechelen M, Amraoui Z, Dubois C, Leo O, Velu T, Goldman M (1993) In vivo induction of interleukin 10 by anti-CD3 monoclonal antibody or bacterial lipopolysaccharide: differential modulation by cyclosporin A. J Exp Med 177:551–555

    PubMed  CAS  Google Scholar 

  • Echtenacher B, Urbaschek R, Weigl K, Freudenberg MA, Männel DN (2003) Treatment of experimental sepsis-induced immunoparalysis with TNF. Immunobiology 208:381–389

    PubMed  CAS  Google Scholar 

  • Eichenholz PW, Eichacker PQ, Hoffman WD, Banks SM, Parrillo JE, Danner RL, Natanson C (1992) Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction. Am J Physiol 263:H668–H675

    PubMed  CAS  Google Scholar 

  • Emery P, Salmon M (1991) The immune response: systemic mediators of inflammation. Br J Hosp Med 45:164–168

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249:469–495

    PubMed  CAS  Google Scholar 

  • Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    PubMed  CAS  Google Scholar 

  • Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271:1836–1843

    PubMed  Google Scholar 

  • Fisher CJ Jr, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM, Benjamin E (1996) Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The soluble TNF Receptor Sepsis Study Group. N Engl J Med 334:1697–1702

    PubMed  CAS  Google Scholar 

  • Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A (2009) The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 8:40–52

    PubMed  CAS  Google Scholar 

  • Gellerich FN, Trumbeckaite S, Hertel K, Zierz S, Müller-Werdan U, Werdan K, Redl H, Schlag G (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11:336–341

    PubMed  CAS  Google Scholar 

  • Goldhaber JI, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN (1996) Effects of TNF-alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271:H1449–55

    PubMed  CAS  Google Scholar 

  • Gomez AM, Kerfant BG, Vassort G (2000) Microtubule disruption modulates Ca2+ signaling in rat cardiac myocytes. Circ Res 86:30–36

    PubMed  CAS  Google Scholar 

  • Groeneveld AB, van Lambalgen AA, van den Bos GC, Bronsveld W, Nauta JJ, Thijs LG (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25:80–88

    PubMed  CAS  Google Scholar 

  • Guia A, Stern MD, Lakatta EG, Josephson IR (2001) Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance. Biophys J 80:2742–2750

    PubMed  CAS  Google Scholar 

  • Haase H (2007) Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca2+ channel. Cardiovasc Res 73:19–25

    PubMed  CAS  Google Scholar 

  • Haase H, Podzuweit T, Lutsch G, Hohaus A, Kostka S, Lindschau C, Kott M, Kraft R, Morano I (1999) Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J 13:2161–2172

    PubMed  CAS  Google Scholar 

  • Haase H, Alvarez J, Petzhold D, Doller A, Behlke J, Erdmann J, Hetzer R, Regitz-Zagrosek V, Vassort G, Morano I (2005) Ahnak is critical for cardiac Ca(V)1.2 calcium channel function and its beta-adrenergic regulation. FASEB J 19:1969–1977

    PubMed  CAS  Google Scholar 

  • Hahn PY, Wang P, Tait SM, Ba ZF, Reich SS, Chaudry IH (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4:269–273

    PubMed  CAS  Google Scholar 

  • Harrois A, Huet O, Duranteau J (2009) Alterations of mitochondrial function in sepsis and critical illness. Curr Opin Anaesthesiol 22:143–149

    PubMed  Google Scholar 

  • Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R (2008) Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 36:2590–2596

    PubMed  CAS  Google Scholar 

  • Hersch M, Gnidec AA, Bersten AD, Troster M, Rutledge FS, Sibbald WJ (1990) Histologic and ultrastructural changes in nonpulmonary organs during early hyperdynamic sepsis. Surgery 107:397–410

    PubMed  CAS  Google Scholar 

  • Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153

    PubMed  CAS  Google Scholar 

  • Hirano Y, Moscucci A, January CT (1992) Direct measurement of L-type Ca2+ window current in heart cells. Circ Res 70:445–455

    PubMed  CAS  Google Scholar 

  • Hoffmann JN, Werdan K, Hartl WH, Jochum M, Faist E, Inthorn D (1999) Hemofiltrate from patients with severe sepsis and depressed left ventricular contractility contains cardiotoxic compounds. Shock 12:174–180

    PubMed  CAS  Google Scholar 

  • Hofmann F, Lacinová L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    PubMed  CAS  Google Scholar 

  • Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H (2002) The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J 16:1205–1216

    PubMed  CAS  Google Scholar 

  • Hosenpud JD, Campbell SM, Mendelson DJ (1989) Interleukin-1-induced myocardial depression in an isolated beating heart preparation. J Heart Transplant 8:460–464

    PubMed  CAS  Google Scholar 

  • Hotchkiss RS, Rust RS, Dence CS, Wasserman TH, Song SK, Hwang DR, Karl IE, Welch MJ (1991) Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F]fluoromisonidazole. Am J Physiol 261:R965–72

    PubMed  CAS  Google Scholar 

  • Hsu C, Wu G, Yang SL, Hsu HK, Yang RC, Tang C, Liu MS (2007) Intracellular redistribution of dihydropyridine receptor in the rat heart during the progression of sepsis. J Surg Res 141:146–152

    PubMed  CAS  Google Scholar 

  • Hu K, Mochly-Rosen D, Boutjdir M (2000) Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Ca2+ channels. Am J Physiol 279:H2658–64

    CAS  Google Scholar 

  • Huang W, Tang Y, Li L (2010) HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51:119–126

    PubMed  CAS  Google Scholar 

  • Hung J, Lew WY (1993) Cellular mechanisms of endotoxin-induced myocardial depression in rabbits. Circ Res 73:125–134

    PubMed  CAS  Google Scholar 

  • Iwakura Y, Nakae S, Saijo S, Ishigame H (2008) The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 226:57–79

    PubMed  CAS  Google Scholar 

  • Jafri SM, Lavine S, Field BE, Bahorozian MT, Carlson RW (1990) Left ventricular diastolic function in sepsis. Crit Care Med 18:709–714

    PubMed  CAS  Google Scholar 

  • Jardin F, Fourme T, Page B, Loubières Y, Vieillard-Baron A, Beauchet A, Bourdarias JP (1999) Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 116:1354–1359

    PubMed  CAS  Google Scholar 

  • Josephson IR, Varadi G (1996) The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J 70:1285–1293

    PubMed  CAS  Google Scholar 

  • Joulin O, Petillot P, Labalette M, Lancel S, Neviere R (2007) Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res 56:291–297

    PubMed  CAS  Google Scholar 

  • Kamp TJ, Hu H, Marban E (2000) Voltage-dependent facilitation of cardiac L-type Ca channels expressed in HEK-293 cells requires beta -subunit. Am J Physiol 278:H126–H255.

    CAS  Google Scholar 

  • Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052

    PubMed  CAS  Google Scholar 

  • Krown KA, Yasui K, Brooker MJ, Dubin AE, Nguyen C, Harris GL, McDonough PM, Glembotski CC, Palade PT, Sabbadini RA (1995) TNF alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett 376:24–30

    PubMed  CAS  Google Scholar 

  • Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958

    PubMed  CAS  Google Scholar 

  • Lancel S, Joulin O, Favory R, Goossens JF, Kluza J, Chopin C, Formstecher P, Marchetti P, Neviere R (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111:2596–2604

    PubMed  CAS  Google Scholar 

  • Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48:377–385

    PubMed  CAS  Google Scholar 

  • Levi M (2010) The coagulant response in sepsis and inflammation. Hamostaseologie 30:10–12

    PubMed  CAS  Google Scholar 

  • Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis. Shock 21:110–114

    PubMed  CAS  Google Scholar 

  • Lew WY, Yasuda S, Yuan T, Hammond HK (1996) Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J Mol Cell Cardiol 28:1367–1371

    PubMed  CAS  Google Scholar 

  • Li XQ, Zhao MG, Mei QB, Zhang YF, Guo W, Wang HF, Chen D, Cui Y (2003) Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacol Sin 24:1224–1230

    PubMed  CAS  Google Scholar 

  • Linz KW, Meyer R (2000) Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits. Pflügers Archiv 439:588–599

    PubMed  CAS  Google Scholar 

  • Liu MS, Wu LL (1991) Reduction in the Ca2+-induced Ca2+ release from canine cardiac sarcoplasmic reticulum following endotoxin administration. Biochem Biophys Res Commun 174:1248–1254

    PubMed  CAS  Google Scholar 

  • Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    PubMed  Google Scholar 

  • Matsuda N, Hattori Y, Akaishi Y, Suzuki Y, Kemmotsu O, Gando S (2000) Impairment of cardiac beta-adrenoceptor cellular signaling by decreased expression of G(s alpha) in septic rabbits. Anesthesiology 93:1465–1473

    PubMed  CAS  Google Scholar 

  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507

    PubMed  CAS  Google Scholar 

  • Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–595

    PubMed  CAS  Google Scholar 

  • Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802

    PubMed  CAS  Google Scholar 

  • Munt B, Jue J, Gin K, Fenwick J, Tweeddale M (1998) Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 26:1829–1833

    PubMed  CAS  Google Scholar 

  • Murray DR, Freeman GL (1996) Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78:154–160

    PubMed  CAS  Google Scholar 

  • Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788

    PubMed  CAS  Google Scholar 

  • Ochi R, Kawashima Y (1990) Modulation of slow gating process of calcium channels by isoprenaline in guinea pig ventricular cells. J Physiol 424:187–204

    PubMed  CAS  Google Scholar 

  • O’Garra A, Murphy KM (2009) From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce T(H)1 development. Nature Immunol 10:929–932

    Google Scholar 

  • Opal SM, Fisher CJ Jr, Dhainaut JF, Vincent JL, Brase R, Lowry SF, Sadoff JC, Slotman GJ, Levy H, Balk RA, Shelly MP, Pribble JP, LaBrecque JF, Lookabaugh J, Donovan H, Dubin H, Baughman R, Norman J, DeMaria E, Matzel K, Abraham E, Seneff M (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 25:1115–1124

    PubMed  CAS  Google Scholar 

  • Opal SM, Garber GE, LaRosa SP, Maki DG, Freebairn RC, Kinasewitz GT, Dhainaut JF, Yan SB, Williams MD, Graham DE, Nelson DR, Levy H, Bernard GR (2003) Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis 37:50–58

    PubMed  CAS  Google Scholar 

  • Oral H, Dorn GW 2nd, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    PubMed  CAS  Google Scholar 

  • Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG (2007) Chronic sepsis mortality characterized by an individualized inflammatory response. J Immunol 179:623–630

    PubMed  CAS  Google Scholar 

  • Parker SJ, Watkins PE (2001) Experimental models of gram-negative sepsis. Br J Surg 88:22–30

    PubMed  CAS  Google Scholar 

  • Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  • Parker MM, McCarthy KE, Ognibene FP, Parrillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–131

    PubMed  CAS  Google Scholar 

  • Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    PubMed  CAS  Google Scholar 

  • Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    PubMed  CAS  Google Scholar 

  • Patten M, Krämer E, Bünemann J, Wenck C, Thoenes M, Wieland T, Long C (2001) Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo. Pflugers Arch 442:920–927

    PubMed  CAS  Google Scholar 

  • Piel DA, Gruber PJ, Weinheimer CJ, Courtois MR, Robertson CM, Coopersmith CM, Deutschman CS, Levy RJ (2007) Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med 35:2120–2127

    PubMed  CAS  Google Scholar 

  • Piel DA, Deutschman CS, Levy RJ (2008) Exogenous cytochrome C restores myocardial cytochrome oxidase activity into the late phase of sepsis. Shock 29:612–616

    PubMed  CAS  Google Scholar 

  • Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23:553–560

    PubMed  CAS  Google Scholar 

  • Powers FM, Farias S, Minami H, Martin AF, Solaro RJ, Law WR (1998) Cardiac myofilament protein function is altered during sepsis. J Mol Cell Cardiol 30:967–978

    PubMed  CAS  Google Scholar 

  • Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parrillo JE (1989) A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 95:1072–1080

    PubMed  CAS  Google Scholar 

  • Reim D, Westenfelder K, Kaiser-Moore S, Schlautkotter S, Holzmann B, Weighardt H (2009) Role of T cells for cytokine production and outcome in a model of acute septic peritonitis. Shock 31:245–250

    PubMed  CAS  Google Scholar 

  • Remick DG, Bolgos G, Copeland S, Siddiqui J (2005) Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun 73:2751–2757

    PubMed  CAS  Google Scholar 

  • Roshon MJ, Kline JA, Thornton LR, Watts JA (2003) Cardiac UCP2 expression and myocardial oxidative metabolism during acute septic shock in the rat. Shock 19:570–576

    PubMed  CAS  Google Scholar 

  • Rossi MA, Celes MR, Prado CM, Saggioro FP (2007) Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 27:10–18

    PubMed  CAS  Google Scholar 

  • Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    PubMed  Google Scholar 

  • Rueckschloss U, Isenberg G (2001) Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J Physiol 537:363–370

    PubMed  CAS  Google Scholar 

  • Schouten M, Wiersinga WJ, Levi M, van der Poll T (2008) Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 83:536–545

    PubMed  CAS  Google Scholar 

  • Schrauwen P, Hesselink M (2002) UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol 205:2275–2285

    PubMed  CAS  Google Scholar 

  • Scott MJ, Godshall CJ, Cheadle WG (2002) Jaks, STATs, Cytokines, and Sepsis. Clin Diagn Lab Immunol 9:1153–1159

    PubMed  CAS  Google Scholar 

  • Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Google Scholar 

  • Shepherd RE, Lang CH, McDonough KH (1987) Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin. Am J Physiol 252:H410–6

    PubMed  CAS  Google Scholar 

  • Sipido KR, Callewaert G, Carmeliet E (1995) Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ Res 76:102–109

    PubMed  CAS  Google Scholar 

  • Solomon MA, Correa R, Alexander HR, Koev LA, Cobb JP, Kim DK, Roberts WC, Quezado ZM, Scholz TD, Cunnion RE et al (1994) Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 266:H757–H768

    PubMed  CAS  Google Scholar 

  • Stein B, Frank P, Schmitz W, Scholz H, Thoenes M (1996) Endotoxin and cytokines induce direct cardiodepressive effects in mammalian cardiomyocytes via induction of nitric oxide synthase. J Mol Cell Cardiol 28:1631–1639

    PubMed  CAS  Google Scholar 

  • Stengl M, Bartak F, Sykora R, Chvojka J, Benes J, Krouzecky A, Novak I, Sviglerova J, Kuncova J, Matejovic M (2010) Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Crit Care Med 38:579–587

    PubMed  CAS  Google Scholar 

  • Stief TW, Ijagha O, Weiste B, Herzum I, Renz H, Max M (2007) Analysis of hemostasis alterations in sepsis. Blood Coagul Fibrinolysis 18:179–186

    PubMed  CAS  Google Scholar 

  • Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64:279–288

    PubMed  CAS  Google Scholar 

  • Sykora R, Chvojka J, Krouzecky A, Radej J, Karvunidis T, Varnerova V, Novak I, Matejovic M (2009) High versus standard-volume haemofiltration in hyperdynamic porcine peritonitis: effects beyond haemodynamics? Intensive Care Med 35:371–380

    PubMed  Google Scholar 

  • Takeuchi K, del Nido PJ, Ibrahim AE, Poutias DN, Glynn P, Cao-Danh H, Cowan DB, McGowan FX Jr (1999) Increased myocardial calcium cycling and reduced myofilament calcium sensitivity in early endotoxemia. Surgery 126:231–238

    PubMed  CAS  Google Scholar 

  • Tang C, Liu MS (1996) Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol 270:R254–R263

    PubMed  CAS  Google Scholar 

  • Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38:472–479

    PubMed  CAS  Google Scholar 

  • Tavernier B, Mebazaa A, Mateo P, Sys S, Ventura-Clapier R, Veksler V (2001) Phosphorylation-dependent alteration in myofilament Сa2+ sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 163:362–367

    PubMed  CAS  Google Scholar 

  • Thongboonkerd V, Chiangjong W, Mares J, Moravec J, Tuma Z, Karvunidis T, Sinchaikul S, Chen ST, Opatrný K, Matejovic M (2009) Altered plasma proteome during an early phase of peritonitis-induced sepsis. Clin Sci 116:721–730

    PubMed  CAS  Google Scholar 

  • Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ 3rd, Zentella A, Albert JD et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470–474

    PubMed  CAS  Google Scholar 

  • Trautwein W, Cavalié A, Flockerzi V, Hofmann F, Pelzer D (1987) Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes. Circ Res 61:I17–I23

    PubMed  CAS  Google Scholar 

  • Tschaikowsky K, Hedwig-Geissing M, Schiele A, Bremer F, Schywalsky M, Schüttler J (2002) Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: Longitudinal study of mononuclear histocompatibility leukocyte antigen – DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Crit Care Med 30:1015–1023

    PubMed  CAS  Google Scholar 

  • Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC (1986) Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 18:691–710

    PubMed  CAS  Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–290

    PubMed  CAS  Google Scholar 

  • van der Heyden MA, Wijnhoven TJ, Opthof T (2005) Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc Res 65:28–39

    PubMed  Google Scholar 

  • Vincent JL, Bakker J, Marécaux G, Schandene L, Kahn RJ, Dupont E (1992) Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 101:810–815

    PubMed  CAS  Google Scholar 

  • Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46:376–392

    PubMed  CAS  Google Scholar 

  • Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS (2004) Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36:141–150

    PubMed  CAS  Google Scholar 

  • White M, Lawless MW, O’Dwyer MJ, Grealy R, Connell BO, Storceur P, Kelleher D, McManus R, Ryan T (2010) Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection. Cytokine 50:322–327

    PubMed  CAS  Google Scholar 

  • Wu LL, Liu MS (1992) Altered ryanodine receptor of canine cardiac sarcoplasmic reticulum and its underlying mechanism in endotoxin shock. J Surg Res 53:82–90

    PubMed  CAS  Google Scholar 

  • Wu SN, Lue SI, Yang SL, Hsu HK, Liu MS (1993) Electrophysiologic properties of isolated adult cardiomyocytes from septic rats. Circ Shock 41:239–247

    PubMed  CAS  Google Scholar 

  • Wu LL, Ji Y, Dong LW, Liu MS (2001a) Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart. Shock 15:49–55

    PubMed  CAS  Google Scholar 

  • Wu LL, Tang C, Liu MS (2001b) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol 281:R408–R416

    CAS  Google Scholar 

  • Wu LL, Tang C, Dong LW, Liu MS (2002) Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock 17:389–393

    PubMed  Google Scholar 

  • Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 25:335–340

    PubMed  CAS  Google Scholar 

  • Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312

    PubMed  CAS  Google Scholar 

  • Zhong J, Hwang TC, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol 273:H2312–H2324

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Research Project MSM 0021620819 (Replacement of and support to some vital organs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Stengl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stengl, M., Prucha, M., Matejovic, M. (2012). Cytokines, Heart and Calcium Current in Sepsis. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_4

Download citation

Publish with us

Policies and ethics