Plant Interactions with Biogeochemical Environments

  • James E. Landmeyer


Plants are essentially chemical factories that naturally produce sugar by using the raw materials of CO2, light energy, and hydrogen from the splitting of water. A waste product of this production of sugar, oxygen, and its release to the environment led to the oxidation of previously reduced metals, such as iron, that currently are used by man. This oxygen release resulted in the demise of many predominant forms of anaerobic life early in the earth’s history or forced them into seclusion through burial in sediments. It also stimulated the development of aerobic respiration as a way to deal with the toxic oxygen gas—this scenario set the stage for all other aerobic forms of life, including us, to develop. Plants carried out these processes while constantly responding to changes in their environment from natural threats, such as fires, volcanic eruptions, radiation emitted from cooling rocks, methane releases, advancing glaciers, herbivory, and toxic concentrations of metal deposits. The plants that survived had selective advantages relative to those that could not cope with these threats.


Root Zone Iron Uptake Hydrologic Cycle Natural Attenuation Aerobic Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arndt, S. K., Kahmen, A., Arampatsis, C., Popp, M., & Adams, M. (2004). Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert. Oecologia, 141, 385–394.CrossRefGoogle Scholar
  2. Bauer, P., & Hell, R. (2006). Translocation of iron in plant tissues. In L. L. Barton & J. Abadίa (Eds.), Iron Nutrition in Plants and Rhizospheric Microorganisms (pp. 279–288). The Netherlands: Springer.CrossRefGoogle Scholar
  3. Bradley, P. M., & Dunn, E. L. (1989). Effects of sulfide on the growth of three salt marsh halophytes of the Southeastern United States. American Journal of Botany, 76, 1707–1713.CrossRefGoogle Scholar
  4. Bradley, P. M., & Morris, J. T. (1991). Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany, 42, 1525–1532.CrossRefGoogle Scholar
  5. Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., & Osborn, R. W. (1997). Antimicrobial peptides from plants. Critical Reviews in Plant Science, 16, 297–323.Google Scholar
  6. Browne, C. A. (1978). A source book of agricultural chemistry. Manchester: Ayer Publishing.Google Scholar
  7. Büchner, E. (1897). Alkoholische gärung ohne hefezellen (Vorläufige Mitteilung). Berichte der Deutschen Chemischen Gesellschaft, 30, 117–124.CrossRefGoogle Scholar
  8. Bukata, A. R., & Kyser, T. K. (2005). Response of the nitrogen isotopic composition of tree-rings following tree-clearing and land-use changes. Environmental Science & Technology, 39, 7777–7783.CrossRefGoogle Scholar
  9. Cannon, H. L. (1971). The use of plant indicators in groundwater surveys, geologic mapping, and mineral prospecting. Taxonomy, 20, 227–256.CrossRefGoogle Scholar
  10. Carson, R. (1962). Silent Spring. Boston: Houghton Mifflin Company.Google Scholar
  11. Chapelle, F. H. (1993). Groundwater microbiology and geochemistry. New York: John Wiley & Sons. 424 p.Google Scholar
  12. Côté, B., & Camiré, C. (1985). Nitrogen cycling in dense plantings of hybrid poplar and black alder. Plant and Soil, 87, 195–208.CrossRefGoogle Scholar
  13. Dinicola, R. S., Cox, S. E., Landmeyer, J. E., Bradley P. M. 2002. Natural attenuation of chlorinated volatile organic compounds in groundwater at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport. Washington: U.S. Geological Survey Water-Resources Investigations Report 02–4119.Google Scholar
  14. Ernst, W. H. O. (2004). Sulfur metabolism in higher plants: potential for phytoremediation. Biodegradation, 9, 311–318.CrossRefGoogle Scholar
  15. Fass, T., Cook, P. G., Stieglitz, T., & Herczeg, A. L. (2007). Development of saline groundwater through transpiration of sea water. Groundwater, 45, 703–710.Google Scholar
  16. Fleming, G. R., Niyogi, K. K. 2005. Zeaxantin. Science, 307, 433.Google Scholar
  17. Fletcher, J. S. 1991. Keynote speech: A brief overview of plant toxicity testing. In: J. W. Gorsuch, W. R. Lower, W. Wang, M. A. Lewis (Eds.), Plants for toxicity assessment: Second volume (ASTM STP 1115, pp. 5–11). Philadelphia, PA: American Society for Testing and Materials.Google Scholar
  18. Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121.CrossRefGoogle Scholar
  19. Fox, J. E., Starcevic, M., Kow, K. Y., Burow, M. E., & McLachlan, J. A. (2001). Nitrogen fixation: Endocrine disrupters and flavonid signaling. Nature, 413, 128–129.CrossRefGoogle Scholar
  20. Gough, L. P., Shacklette, H. T., Case, A. A. 1979. Element concentrations toxic to plants, animals, and man (U.S. Geological Survey Bulletin 1466, 80 p.). Washington, DC: U.S. Government Printing Office.Google Scholar
  21. Graham, R. D., Stangoulis, J. C. R. (2003). Trace element uptake and distribution in plants. The Journal of Nutrition, 133, supplement to 11th Meeting of the Trace Elements in Man and Animals (TEMA), Berkeley, CA, June 2–6, 2002, 1502S–1505S.Google Scholar
  22. Greenwood, W. J., Kruse, S., & Swarzenski, P. (2006). Extending electromagnetic methods to map coastal pore water salinities. Groundwater, 44, 292–299.Google Scholar
  23. Guelke, M., & Von Blanckenburg, F. (2007). Fractionation of stable iron isotopes in higher plants. Environmental Science & Technology, 41, 1896–1901.CrossRefGoogle Scholar
  24. Guerinot, M. L., & Salt, D. E. (2001). Fortified foods and phytoremediation: Two sides of the same coin. Plant Physiology, 125, 164–167.CrossRefGoogle Scholar
  25. Guerinot, M. L., & Ying, Y. (1994). Iron: nutritious, noxious, and not readily available. Plant Physiology, 104, 815–820.Google Scholar
  26. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.CrossRefGoogle Scholar
  27. Harrass, M. C., Eirkson, C. E. III, Nowell, L. H. (1991). Role of plant bioassays in FDA review:Scenario for terrestrial exposure. In: J. W. Gorsuch, W. R. Lower, W. Wang, M. A. Lewis, (Eds.), Plants for toxicity assessment: Second volume (ASTM STP 1115, pp.12–28). Philadelphia, PA: American Society for Testing and Materials.Google Scholar
  28. Hillel, D. (1998). Environmental Soil Physics. San Diego: Academic Press. 771 p.Google Scholar
  29. Horne, A. J. (2000). Phytoremediation by constructed wetlands. In N. Terry & G. Banuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 13–39). Boca Raton, FL: Lewis Publishers.Google Scholar
  30. Jenson, J. R. (2000). Remote sensing of the environment: an earth resource perspective:. Upper Saddle River, NJ: Prentice-Hall, Inc. 544 p.Google Scholar
  31. Jones, H. E., & Etherington, J. R. (1970). Comparative studies of plant growth and distribution in relation to waterlogging: the survival of Erica cinerea and E. tetralix L. and its apparent relationship to iron and manganese uptake in waterlogged soil. Journal of Ecology, 58, 487–496.CrossRefGoogle Scholar
  32. Kawai, S., & Alam, S. (2006). Iron stress response and composition of xylem sap of strategy II plants. In L. L. Barton & J. Abadίa (Eds.), Iron Nutrition in Plants and Rhizospheric Microorganisms (pp. 289–309). The Netherlands: Springer.CrossRefGoogle Scholar
  33. Kim, S. A., & Guerinot, M. L. (2007). Mining iron. Iron uptake and transport in plants: FEBS Letters, 581, 2273–2280.Google Scholar
  34. Kollin, C. (2006). How green infrastructure measures up to structural stormwater services; quantifying the contributions of trees and vegetation. Stormwater, 7, 138–144.Google Scholar
  35. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  36. Kormondy, E. J. (1976). Concepts of Ecology. Englewood Cliffs, NJ: Prentice-Hall, Inc. 238 pp.Google Scholar
  37. Krauter, P. W. (2001). Using a wetland bioreactor to remediate groundwater contaminated with nitrate (mg/L) and perchlorate (ug/L). International Journal of Phytoremediation, 3, 415–433.CrossRefGoogle Scholar
  38. Landmeyer, J. E., Chapelle, P. M., Herlong, H. E., & Bradley, P. M. (2001). Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions. Environmental Science & Technology, 35, 1118–1126.CrossRefGoogle Scholar
  39. Landmeyer, J. E., Tanner, T. L., & Watt, B. E. (2004). Biotransformatin of tributyltin (TBT) to tin in freshwater river-bed sediments contaminated by an organotin release. Environmental Science & Technology, 38, 4106–4112.CrossRefGoogle Scholar
  40. Laturnus, F., Haselmann, K. F., Borch, T., & Grøn, C. (2002). Terrestrial natural sources of trichloromethane (chloroform, CHCl3) – An overview. Biogeochemistry, 60, 121–139.CrossRefGoogle Scholar
  41. Lewis, M. A., & Wang, W. (1997). Water quality and aquatic plants. In W. Wang, J. W. Gorsuch, & J. S. Hughes (Eds.), Plants for Environmental Studies. Boca Raton, FL: CRC Press, LLC.Google Scholar
  42. Loomis, R. S., & Williams, W. A. (1963). Maximum crop productivity: One estimate. Crop Science, 3, 67–72.CrossRefGoogle Scholar
  43. Lorah, M. M., & Olsen, L. D. (1999). Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland:Field and laboratory evidence. Environmental Science &Technology, 33, 227–234.CrossRefGoogle Scholar
  44. Mayer, P. M., Reynolds Jr., S. K., Canfield, T. J., & McCutchen, M. D. (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: A review of current science and regulations (EPA/600/R–05/118, 27 p.). Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  45. McFarlane, C., Pfleeger, T., & Fletcher, J. (1990). Effect, uptake and disposition of nitrobenzene in several terrestrial plants. Environmental Toxicology and Chemistry, 9, 513–520.CrossRefGoogle Scholar
  46. Meinzer, O. E. (1927). Plants as indicators of groundwater (U.S. Geological Survey Water-Supply Paper 577, 95 p.). Washington, DC: U.S. Government Printing Office.Google Scholar
  47. National Research Council. (1994). Alternatives for groundwater cleanup: Washington. Washington, D.C: D.C. National Academy of Sciences.Google Scholar
  48. National Research Council. 2000. Natural attenuation for groundwater remediation: National Academy of Sciences. Washington, D.C. 274 p.Google Scholar
  49. Nilsen, E.T., Sharifi, M.R., Rundel, P.W., and others. 1983. Diurnal and seasonal water relations of the desert phreatophyte Prosopis Glandulosa (Honey Mesquite) in the Sonoran Desert, California: Ecology (64):1381–1393.Google Scholar
  50. Nowack, B., Schulin, R., & Robinson, B. H. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology, 40, 5225–5232.CrossRefGoogle Scholar
  51. Oborn, E.T. 1962. Iron content of selected water and land plants In Chemstry of iron in natural water: U.S. Geological Survey Water-Supply Paper 1459, Chapter G, pp. 191–213.Google Scholar
  52. Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694–697.CrossRefGoogle Scholar
  53. Römheld, V., & Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology, 80, 175–180.CrossRefGoogle Scholar
  54. Royce, C. L., Fletcher, J. S., Risser, P. G., McFarlane, J. C., & Benenati, F. E. (1984). PHYTOTOX: A database dealing with the effect of organic chemicals and terrestrial vascular plants. Journal of Chemical Information and Modeling, 24, 7–10.CrossRefGoogle Scholar
  55. Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 29, 318–323.CrossRefGoogle Scholar
  56. Shannon, M. C., Bañuelos, G. S., Draper, J. H., Ajwa, H., Jordahl, J., & Licht, L. (1999). Tolerance of hybrid poplar (Populus) trees irrigated with varied levels of salt, selenium, and boron. International Journal of Phytoremediation, 1, 273–288.CrossRefGoogle Scholar
  57. The Economist. 2005. Ears of Plenty: vol 377, no 8458.Decmeber 24, 2005. The Economist Newspapers Limited.Google Scholar
  58. Transeau, E. N. (1926). The accumulation of energy by plants. Ohio Journal of Science, 26, 1–10.Google Scholar
  59. Trapp, S., and Christiansen, H. 2003. Phytoremediation of cyanide-polluted soils, In, McCutcheon, S.C., and Schnoor, J.L. (eds), Phytoremediation: Transformation and Control of Contaminants. John Wiley & Sons, Hoboken, NJ; 829–862.Google Scholar
  60. U.S. Environmental Protection Agency. 1994. Land application of sewage sludge – A guide for land appliers on the requirements of the Federal Standards for the use or disposal of Sewage sludge, 40 CFR Part 503: EPA/831–B–93–002b.Google Scholar
  61. U.S. Environmental Protection Agency. 1995. Standards for the use and disposal of sewage sludge, 40 CFR Part 503. February 19, 1993, and amendments dated February 25, 1994, October 25, 1995.Google Scholar
  62. Van der Lelie, D., Schwitzguebel, J-P., Glass, D.J., Vangronsveld, J., and Baker, A. 2001. Assessing phytoremediation’s progress in the United States and Europe: Environmental Science & Technology (35): 447A–452A.Google Scholar
  63. Van Doren, M. (1955). Travels of William Bartram. New York, NY: Dover publications, Inc.Google Scholar
  64. Walton, B. T., & Anderson, T. A. (1992). Plant-microbe treatment systems for toxic waste. Biotechnology, 3, 267–270.Google Scholar
  65. Wardsman, P., & Candeias, L. P. (1996). Fenton Centennial Symposium. Fenton Chemistry: An Introduction: Radiation Research, 145, 523–531.Google Scholar
  66. Westbrooks, R.G., and Preacher, J.W. 1986. Poisonous plants of eastern North America: University of South Carolina Press, 226 p.Google Scholar
  67. Whittaker, R. H., & Feeny, P. P. (1971). Allelochemics: chemical interactions between species. Science, 171, 757–770.CrossRefGoogle Scholar
  68. Wickliff, C., and Fletcher, J.S. 1991. Tissue culture as a method for evaluating the biotransformation of xenobiotics by plants: In Plants for Toxicity Assessment: Second Volume. ASTM STP 1115. J.W. Gorsuch, W.R. Lower, W. Wang, and M.A. Lewis, (eds.) American Society for Testing and Materials. Philadelphia, PA.:250–257.Google Scholar
  69. Willstätter, R., and Stoll, A. 1913. Untersuchung über Chlorophyllen, methoden, und ergebnisse: Julius Springer, Berlin.Google Scholar
  70. Zogorski, J.S., Carter, J.M., Ivahnenko, T., Lapham, W.W., Moran, M.J., Rowe, B.L., Squillace, P.J., and Toccalino, P.L. 2006. The quality of our Nation’s waters- volatile organic compounds in the Nation’s ground water and drinking-water supply wells: U.S. Geological Survey Circular 1292, 101 p.Google Scholar
  71. Larsen, M., & Trapp, S. (2006). Uptake of iron cyanide complexes into willow trees. Environmental Science & Technology, 40, 1956–1961.CrossRefGoogle Scholar
  72. Mahler, B. J., Van Metre, P. C., Bashara, T. J., Wilson, J. T., & Johns, D. A. (2005). Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons. Environmental Science & Technology, 39, 5560–5566.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.South Carolina Water Science CenterU.S. Geological SurveyColumbiaUSA

Personalised recommendations