Advertisement

From Cell-Surface Receptors to Higher Learning: A Whole World of Experience

  • Karola Stotz
  • Colin Allen
Chapter
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 282)

Abstract

In the last decade it has become en vogue for cognitive comparative psychologists to study animal behavior in an ‘integrated’ fashion to account for both the ‘innate’ and the ‘acquired’. We will argue that these studies, instead of really integrating the concepts of ‘nature’ and ‘nurture’, rather cement this old dichotomy. They combine empty nativist interpretations of behavior systems with blatantly environmentalist explanations of learning. We identify the main culprit as the failure to take development seriously. While in some areas of biology interest in the relationship between behavior and development has surged through topics such as extragenetic inheritance, niche construction, and phenotypic plasticity, this has gone almost completely unnoticed in the study of animal behavior in comparative psychology, and is frequently ignored in ethology too. The main aims of this paper are to clarify the relationship between the concepts of learning, experience, and development, and to investigate whether and how all three concepts can be usefully deployed in the study of animal behavior. This will require the full integration of the psychological study of behavior into biology, and of the idea of learning into a wider concept of experience. We lay out how, in a systems view of development, learning may just appear as one among many processes in which experience influences behavior. We argue for a position in which development and learning are tightly assimilated to one another. Not learning and development, but learning as part of development. This new synthesis should help to overcome the age-old dualism between innate and acquired. It thereby opens up the possibility of developing scientifically more fruitful distinctions.

Keywords

Causal Role Phenotypic Plasticity Niche Construction Behavior Analyst System View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This paper has been a long time developing. It stems from our interactions while KS was a postdoctoral research associate in the Cognitive Science Program at Indiana University. Members of the Indiana University Biology Studies Research Group provided comments on an early version of this paper, and we are especially grateful to Lisa Lloyd for her written comments on that version. We would both like to thank Indiana University’s New Frontiers program for supporting the symposium “Reconciling Nature and Nurture in the Study of Behavior” organized by KS in 2007. We benefitted from a presentation of these ideas at the 2007 meeting of the Society for Philosophy and Psychology, which included commentary by Luc Faucher. We are grateful to the editors Katie Plaisance and Thomas Reydon for their comments, as well as two anonymous referees for the press. We would also like to thank Ulrike Pompe for her careful reading of the penultimate draft. KS’s research is funded by the Australian Research Council’s Discovery Projects funding scheme (project number 0878650). CA was supported by the Alexander von Humboldt Foundation while visiting the Ruhr University, Bochum, during the final preparation of this manuscript.

References

  1. Alberts, J. R. (2008): ‘The nature of nurturant niches in ontogeny’, Philosophical Psychology 21 (Special Issue, Reconciling Nature and Nurture in the study of Cognition and Behavior): 295–303.Google Scholar
  2. Allen, C. (2006): ‘Transitive Inference in Animals: Reasoning or Conditioned Associations?’ In Hurley and Nudds (eds.) Rational Animals? Oxford: Oxford University Press, 175–185.Google Scholar
  3. Allen, C., Grau, J. W. and Meagher, M. W. (2009): ‘The Lower Bounds of Cognition: What Do Spinal Cords Reveal?’ In: J. Bickle (ed.): The Oxford Handbook of Philosophy and Neuroscience, Oxford: Oxford University Press.Google Scholar
  4. Baker, M. D. & Stock, J. B. (2007): ‘Signal Transduction: Networks and Integrated Circuits in Bacterial Cognition’, Current Biology 17: R1021–R1024.CrossRefGoogle Scholar
  5. Ben-Barak, I. (2008): Small Wonders: How Microbes Rule Our World, Carlton North (Vic.): Scribe Publication.Google Scholar
  6. Bering, J. M. (2004): ‘A critical review of the “enculturation hypothesis”: the effects of human rearing on great ape social cognition’, Animal Cognition 7: 201–212.CrossRefGoogle Scholar
  7. Blumberg, M. (2005): Basic Instinct: The Genesis of Behavior, New York: Thunder’s Mouth Press.Google Scholar
  8. Boakes, R. (1984): From Darwinism to Behaviorism, Cambridge: Cambridge University Press.Google Scholar
  9. Burrell, B. D. & Sahley, C. L. (2001): ‘Learning in simple systems’, Current Opinion in Neurobiology 11: 757–764.CrossRefGoogle Scholar
  10. Byrne, R. W. (2004): ‘Detecting, understanding, and explaining animal imitation’, In: Hurley, S. and Chater, N. (eds.): Perspectives on Imitation: From Mirror Neurons to Memes, Cambridge (MA): MIT Press.Google Scholar
  11. Cacioppo, J. T. & Berntson, G. G. (eds.) (2004): Essays in Social Neuroscience (Social Neuroscience Series), Cambridge (MA): MIT Press.Google Scholar
  12. Call, J. & Tomasello, M. (1996): ‘The effects of humans on the cognitive development of apes’, In A. E. Russon, K. A. Bard and S. T. Parker (eds.): Reaching into Thought, New York: Cambridge University Press.Google Scholar
  13. Call, J. & Tomasello, M. (1998): ‘Distinguishing intentional from accidental actions in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes) and human children (Homo sapiens)’, Journal for Comparative Psychology 112: 192–206.CrossRefGoogle Scholar
  14. Carmichael, L. (1925): ‘Heredity and Environment: Are they antithetical?’, Journal of Abnormal and Social Psychology 20: 245–260.CrossRefGoogle Scholar
  15. Caspi, A., Hariri, A., Holmes, A., Uher, R., & Moffitt, T. E. (2010): ‘Genetic sensitivity to the environment: The case of the serotonin transporter gene (5-HTT) and its implications for studying complex diseases and traits’, American Journal of Psychiatry 167: 509–527.CrossRefGoogle Scholar
  16. Castellucci, V., Pinsker, H., Kupfermann, I. & Kandel, E. R. (1970): ‘Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia’, Science 167: 1745–1748.CrossRefGoogle Scholar
  17. Chwang, W. B., O’Riordan, K. J., Levenson, J. M. & Sweatt, J. D. (2006): ‘ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning’, Learning and Memory 13: 322–328.CrossRefGoogle Scholar
  18. Claverie, J. M. (2001): ‘Gene number: what if there are only 30,000 human genes?’ Science 291: 1255–1257.CrossRefGoogle Scholar
  19. Collier-Baker E. & Suddendorf, T. (2006): ‘Do chimpanzees (Pan troglodytes) and 2-year-old children (Homo sapiens) understand double invisible displacement?’ Journal of Comparative Psychology 120: 89–97.CrossRefGoogle Scholar
  20. Crowley, S. J. & Allen, C. (2008): ‘Animal Behavior: E pluribus unum?’ In: M. Ruse (ed.): The Oxford Handbook of the Philosophy of Biology, Oxford: Oxford University Press, 327–348.CrossRefGoogle Scholar
  21. Dolinoy, D. C. & Jirtle, R. L. (2008): ‘Environmental epigenomics in human health and disease’, Environmental and Molecular Mutagenes 49: 4–8.CrossRefGoogle Scholar
  22. Donald, M. (2000): ‘The central role of culture in cognitive evolution: A reflection on the myth of the “isolated mind”’, In: L. Nucci, G. B. Saxe and E. Turiel (eds.): Culture, Thought and Development, Mahwah (NJ): Lawrence Erlbaum Associates.Google Scholar
  23. Dretske, F. (1981): Knowledge and the Flow of Information, Cambridge (MA): MIT Press.Google Scholar
  24. Emery, N. J. (2006): ‘Cognitive ornithology: the evolution of avian intelligence’, Philosophical Transactions of the Royal Society B 361: 23–43.CrossRefGoogle Scholar
  25. Fodor, J. A. (1975): The Language of Thought, New York: Crowell.Google Scholar
  26. Freeberg, T. M., West, M. J., King, A. P., Duncan, S. D. & Sengelaub, D. R. (2002): ‘Cultures, genes, and neurons in the development of song and singing in brown-headed cowbirds (Molothrus ater)’, Journal of Comparative Physiology 188: 993–1002.CrossRefGoogle Scholar
  27. Furlong, E. E., Boose, K. J. & Boysen, S. T. (2008): ‘Raking it in: The impact of enculturation on chimpanzee tool use’, Animal Cognition 11: 83–97.CrossRefGoogle Scholar
  28. Gácsi, M., Virányi, Z., Kubinyi, E., Belényi, B. & Miklósi, Á. (2009): ‘Explaining dog wolf differences in utilizing human pointing gestures: Selection for synergistic shifts in the development of some social skills’, PLoSONE 4: e6584.CrossRefGoogle Scholar
  29. Gilbert, S. & Epel, D. (2009): Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution, Sunderland (MA): Sinauer Associates.Google Scholar
  30. Gilbert, S. F. (2001): ‘Ecological developmental biology: Developmental biology meets the real world’, Developmental Biology 233: 1–22.CrossRefGoogle Scholar
  31. Gilbert, S. F. (2003): ‘The reactive genome’, In: G. B. Müller and S. A. Newman (eds.): Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, Cambridge (MA): MIT Press.Google Scholar
  32. Ginsburg, S. & Jablonka, E. (2009): ‘Epigenetic learning in non-neural organisms’, Journal of Bioscience 33: 633–646.CrossRefGoogle Scholar
  33. Gottlieb, G. (1981): ‘Roles of early experience in species-specific perceptual development’, In: R. N. Aslin, J. R. Alberts and M. P. Petersen (eds.): Development of Perception, New York: Academic Press.Google Scholar
  34. Gottlieb, G. (1995): ‘Some conceptual deficiencies in ‘developmental’ behavior genetics’, Human Development 38: 131–141.CrossRefGoogle Scholar
  35. Gottlieb, G. (1997): Synthesizing Nature-Nurture: Prenatal Roots of Instinctive Behavior, Hillsdale (NJ): Lawrence Erlbaum Associates.Google Scholar
  36. Gottlieb, G. (2001): ‘A developmental psychobiological systems view: Early formulation and current status’. In: S. Oyama, P. E. Griffiths and R. D. Gray (eds.): Cycles of Contingency: Developmental Systems and Evolution, Cambridge (MA): MIT Press.Google Scholar
  37. Grau, J. W., Crown, E. D., Ferguson, A. R., Washburn, S. N., Hook, M. A. & Miranda, R. C. (2006): ‘Instrumental learning within the spinal cord: Underlying mechanisms and implications for recovery after injury’, Behavioral and Cognitive Neuroscience Reviews 5: 191–239.CrossRefGoogle Scholar
  38. Grau, J. W. & Joynes, R. L. (2005a): ‘A neural-functionalist approach to learning’, International Journal of Comparative Psychology 18: 1–22.Google Scholar
  39. Grau, J. W. & Joynes, R. L. (2005b): ‘Neurofunctionalism revisited: Learning is more than you think it is’, International Journal of Comparative Psychology 18: 46–59.Google Scholar
  40. Griffiths, P. E. (2002): ‘What is Innateness?’ The Monist 85: 70–85.Google Scholar
  41. Griffiths, P. E. (2004): ‘Instinct in the ’50s: The British reception of Konrad Lorenz’s theory of instinctive behaviour’, Biology and Philosophy 19: 609–631.CrossRefGoogle Scholar
  42. Griffiths, P. E. & Gray, R. D. (2005): ‘Three ways to misunderstand Developmental Systems Theory’, Biology and Philosophy 20: 417–425.CrossRefGoogle Scholar
  43. Griffiths, P. E. & Stotz, K. (2000): ‘How the mind grows: A developmental perspective on the biology of cognition’, Synthese 122: 29–51.CrossRefGoogle Scholar
  44. Griffiths, P. E. & Tabery, J. (2008): ‘Behavioral genetics and development: Historical and conceptual causes of controversy’, New Ideas in Psychology 26: 332–352.CrossRefGoogle Scholar
  45. Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B. & Tomasello, M. (2007): ’Humans have evolved specialized skills of social cognition: The Cultural Intelligence Hypothesis’, Science 317: 1360–1366.CrossRefGoogle Scholar
  46. Hinde, R. A. (1966): Animal Behaviour: A Synthesis of Ethology and Comparative Psychology, New York: McGraw Hill.Google Scholar
  47. Inouea, S. & Matsuzawa, T. (2007): ‘Working memory of numerals in chimpanzees’, Current Biology 17: R1004–R1005.CrossRefGoogle Scholar
  48. Jablonka, E. & Lamb, M. J. (2005): Evolution in Four Dimenesions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life, Cambridge (MA): MIT Press.Google Scholar
  49. Jaenisch, R. & Bird, A. (2003): ‘Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals’, Nature Genetics 33 Suppl.: 245–254.CrossRefGoogle Scholar
  50. Johannsen, W. (1911): ‘The genotype conception of heredity’, American Naturalist 45: 129–159.CrossRefGoogle Scholar
  51. Johnston, T. (2002): ‘An early manuscript in the history of American comparative psychology: Lewis Henry Morgan’s Animal Psychology’, History of Psychology 5: 323–355.CrossRefGoogle Scholar
  52. Johnston, T. D. (2001): ‘Towards a systems view of development: An appraisal of Lehrman’s critique of Lorenz’. In: S. Oyama, P. E. Griffiths and R. D. Gray (eds.): Cycles of Contingency: Developmental Systems and Evolution, Cambridge (MA): MIT Press.Google Scholar
  53. Jones, S. S. (2005): ‘Why don’t apes ape more?’, In: S. Hurley and N. Chater (eds.): Perspectives on Imitation: From Cognitive Neuroscience to Social Science, Cambridge (MA): MIT Press.Google Scholar
  54. Keller, E. F. (2000): The Century of the Gene, Cambridge (MA): MIT Press.Google Scholar
  55. Kumashiro, M., Ishibashi, H., Uchiyama, Y., Itakura, S., Murata, A. & Iriki, A. (2003): ‘Natural imitation induced by joint attention in Japanese monkeys’, International Journal of Psychophysiology 50: 81–99.CrossRefGoogle Scholar
  56. Kuryatov, A., Laube, B., Betz, H. & Kuhse, J. (1994): ‘Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins’, Neuron 12: 1291–1300.CrossRefGoogle Scholar
  57. Lamm, E. & Jablonka, E. (2008): ‘The nurture of nature: Hereditary plasticity in evolution’, Philosophical Psychology 21: 305–319.CrossRefGoogle Scholar
  58. Lehrman, D. S. (1953): ‘Critique of Konrad Lorenz’s theory of instinctive behavior’, Quarterly Review of Biology 28: 337–363.CrossRefGoogle Scholar
  59. Lehrman, D. S. (1970): ‘Semantic & conceptual issues in the nature-nurture problem’. In: D. S. Lehrman (ed.): Development & Evolution of Behaviour, San Francisco: W. H. Freeman and Co.Google Scholar
  60. Lewontin, R. C. (1983): ‘The organism as the subject and object of evolution’, Scientia 118: 65–82.Google Scholar
  61. Lewontin, R. C. (2000): The Triple Helix: Gene, Organism, and Environment, Cambridge (MA): Harvard University Press.Google Scholar
  62. Linquist, S., Machery, E., Griffiths, P. E. & Stotz, K. (2011): ‘Exploring the folkbiological conception of human nature’, Philosophical Transactions of the Royal Society B 366(1563): 444–453.Google Scholar
  63. Levitis, D. A., Lidicker Jr., W. Z. & Freund, G. (2009): ‘Behavioural biologists do not agree on what constitutes behaviour’, Animal Behaviour 78: 103–110.CrossRefGoogle Scholar
  64. Lloyd, E. A. (2004): ‘Kanzi, evolution, and language’, Biology & Philosophy 19: 577–588.CrossRefGoogle Scholar
  65. Lyon, P. (2006): The Agent in the Organism: Towards a Biogenic Theory of Cognition. PhD dissertation, Australian National University.Google Scholar
  66. Maestripieri, D. & Mateo J. M. (eds.) (2009): Maternal Effects in Mammals, Chicago: The University of Chicago Press.Google Scholar
  67. Maienschein, J. (2005): ‘Epigenesis and preformationism’, In: Zalta, E. N. (ed.): Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/epigenesis/.
  68. Marler, P. & Slabbekoorn, H. (eds.) (2004): Nature’s Music: The Science of Birdsong. San Diego: Elsevier.Google Scholar
  69. Maturana, H. R. & Varela, F. J. (1980): Autopoiesis and Cognition: The Realization of the Living, New York: Springer.CrossRefGoogle Scholar
  70. McGonigle, B. O. & Chalmers, M. (2002): ‘The growth of cognitive structures in monkeys and men’. In: S. B. Fountain, M. D. Bunsey, J. H. Danks and M. K. McBeath (eds.): Animal Cognition and Sequential Behaviour. Behavioural, Biological and Computational Perspectives, Boston: Kluwer Academic Publishers.Google Scholar
  71. McGonigle, B. O. & Chalmers, M. (2008): ‘Putting Descartes before the horse (again!). Commentary on Penn, D., Povinelli, D.J and Holyoak, K.J.’, Behavioral and Brain Sciences 31: 142–143.CrossRefGoogle Scholar
  72. Meaney, M. J. (2001a): ‘Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations’, Annual Review Neuroscience 24: 1161–92.CrossRefGoogle Scholar
  73. Meaney, M. J. (2001b): ‘Nature, Nurture, and the Disunity of Knowledge’, Annals of the New York Academy of Sciences 935: 50–61.CrossRefGoogle Scholar
  74. Michel, G. F. & Moore C. L. (1995): Developmental Psychobiology: An interdisciplinary science, Cambridge (MA): MIT Press.Google Scholar
  75. Midgley, B. D. & Morris, E. K. (1992): ‘Nature = f(nurture): A review of Oyama’s “The Ontogeny of Information: Developmetal Systems and Evolution”’, Journal of the Experimental Analysis of Behavior 58: 229–240.CrossRefGoogle Scholar
  76. Miller, C. A., Campbell, S. L. & Sweatt, J. D. (2008): ‘DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity’, Neurobiology of Learning and Memory 89: 599–603.CrossRefGoogle Scholar
  77. Miller, G. (2010): ‘The seductive allure of behavioral epigenetics’, Science 329: 24–27.CrossRefGoogle Scholar
  78. Moore, C. L. (1984): ‘Maternal contributions to the development of masculine sexual behavior in laboratory rats’, Developmental Psychobiology 17: 347–356.CrossRefGoogle Scholar
  79. Moore, C. L. (2003): ‘Differences between organism-environment systems conceived by Lehrman and Gibson: What’s in the nest of reciprocities matters’, Developmental Psychobiology 42: 349–356.CrossRefGoogle Scholar
  80. Moss, L. (2001): ‘Deconstructing the gene and reconstructing molecular develomental systems’. In: S. Oyama, P. E. Griffiths and R. D. Gray (eds.): Cycles of Contingency: Developmental Systems and Evolution, Cambridge (MA): MIT Press.Google Scholar
  81. Mousseau, T. A. & Fox, C. W. (eds.) (1998): Maternal Effects as Adaptations. Oxford: Oxford University Press.Google Scholar
  82. Nathanielsz, P. W. & Thornburg, K. L. (2003): ‘Fetal programming: from gene to functional systems–an overview’, Journal of Physiology 547: 3–4.Google Scholar
  83. Newman, S. A. (2003): ‘From physics to development: the evolution of morphogenetic mechanisms’, In: Müller, G. B. & Newman, S. A. (eds.): Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, Cambridge (MA): MIT Press.Google Scholar
  84. Noh, J., Sharma, R. P. Veldic, M. Salvacion, A. A. Jia, X. & Chen, Y. (2005): ‘DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures’, Proceedings of the National Academy of Sciences of the U.S.A. 102: 1749 –1754.CrossRefGoogle Scholar
  85. Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003): Niche Construction: The Neglected Process in Evolution, Princeton (NJ): Princeton University Press.Google Scholar
  86. Oyama, S. (1985): The Ontogeny of Information: Developmental systems and evolution, Cambridge (MA): MIT Press.Google Scholar
  87. Oyama, S. (1999): ‘The nurturing of natures’. In: Grunwald, A., Gutmann M. & Neumann-Held E. M. (eds.): On Human Nature. Anthropological, Biological and Philosophical Foundations, New York: Springer.Google Scholar
  88. Oyama, S. (2001): ‘Term in tension: What do you do when all the good words are taken?’ In: S. Oyama, P. E. Griffiths and R. D. Gray (eds.): Cycles of Contingency: Developmental Systems and Evolution, Cambridge (MA): MIT Press.Google Scholar
  89. Oyama, S., Griffiths, P. E. & Gray, R. D. (2001b): ‘Introduction: What is developmental systems theory?’ In: S. Oyama, P. E. Griffiths and R. D. Gray (eds.): Cycles of Contingency: Developmental Systems and Evolution, Cambridge (MA): MIT Press.Google Scholar
  90. Oyama, S., Griffiths, P. E. & Gray, R. D. (eds.) (2001a): Cycles of Contingency: Developmental Systems and Evolution. Cambridge (MA): MIT Press.Google Scholar
  91. Papineau, D. & Heyes, C. (2006): ‘Rational or Associative? Imitation in Japanese Quail.’ In Hurley and Nudds (eds.) Rational Animals? Oxford: Oxford University Press, 198–216.Google Scholar
  92. Penn, D. C., Holyoak, K. J. & Povinelli, D. J. (2008): ‘Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds’, Behavioral and Brain Sciences 31: 109–129.Google Scholar
  93. Penn, D. & Povinelli, D. (2007a): ‘Causal Cognition in Human and Nonhuman Animals: A Comparative, Critical Review.’ Annual Review of Psychology 58: 97–118.CrossRefGoogle Scholar
  94. Penn, D. C. & Povinelli, D. J. (2007b): ‘On the lack of evidence that chimpanzees possess anything remotely resembling a ‘theory of mind’’, Philosophical Transactions of the Royal Society B 362: 731–744.CrossRefGoogle Scholar
  95. Povinelli, D. J. (2000): Folk Physics for Apes. New York: Oxford University Press.Google Scholar
  96. Piaget, J. (1971/1967): Biology and Knowledge: An Essay on the Relations between Organic Regulations and Cognitive Processes, Chicago: Chicago University Press.Google Scholar
  97. Pigliucci, M. (2001): Phenotypic Plasticity: Beyond Nature and Nurture, Syntheses in Ecology and Evolution, Baltimore: The Johns Hopkins University Press.Google Scholar
  98. Robert, J. S. (2004): Embryology, Epigenesis and Evolution: Taking Development Seriously, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  99. Roe, S. A. (1981): Matter, Life, and Generation: Eighteenth-Century Embryology and the Haller-Wolff Debate, New York: Cambridge University Press.Google Scholar
  100. Rosenberg, A. (1997): ‘Reductionism redux: computing the embryo’, Biology and Philosophy, 12: 445–470.CrossRefGoogle Scholar
  101. Saigusa, T., Tero, A., Nakagaki, T. & Kuramoto, Y. (2008): ‘Amoebae Anticipate Periodic Events’, Physical Review Letters 100: 018101.Google Scholar
  102. Samuelson, L. K. & Smith, L. B. (2000): ‘Grounding development in cognitive processes’, Child Development 71: 98–106.CrossRefGoogle Scholar
  103. Savage-Rumbaugh, S., Fields, W. M. & Spircu, T. (2004): ‘The emergence of knapping and vocal expression embedded in a Pan/Homo culture’, Biology & Philosophy, 19: 541–575.CrossRefGoogle Scholar
  104. Schneirla, T. C. (1957): ‘The concept of development in comparative psychology’. In: Harris, D. B. (ed.): The concept of development, Minneapolis: University of Minnesota Press.Google Scholar
  105. Schneirla, T. C. (1966): Behavioral Development and Comparative Psychology, Quarterly Review of Biology 41: 283–303.CrossRefGoogle Scholar
  106. Shair, H. N., Barr, G. A. & Myron, eds. H. A. (1991): Developmental Psychobiology: New Methods and Changing Concepts. Oxford: Oxford University Press.Google Scholar
  107. Shapiro, J. A. (2007): ‘Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology’, Studies in History and Philosophy of Biological and Biomedical Sciences 38: 807–819.CrossRefGoogle Scholar
  108. Shettleworth, S. J. (1994): ‘Biological approaches to the study of learning’. In: Mackintosh, N. J. (ed.): Handbook of Perception and Cognition, London: Academic Press.Google Scholar
  109. Smith, L. B. & Breazeal, C. (2007): ‘The dynamic lift of developmental process’, Developmental Science 10: 61–68.CrossRefGoogle Scholar
  110. Spencer, J. P., Corbetta, D., Buchanan, P., Clearfield, M., Ulrich, B. & Schöner, G. (2006): ‘Moving toward a Grand Theory of Development: In memory of Esther Thelen’, Child Development 77: 1521–1538.CrossRefGoogle Scholar
  111. Sterelny, K. (2003): Thought in a Hostile World: The Evolution of Human Cognition, Oxford: Blackwell.Google Scholar
  112. Sterelny, K. & Griffiths, P. E. (1999): Sex and Death: An Introduction to the Philosophy of Biology, Chicago: University of Chicago Press.Google Scholar
  113. Stevenson, H. W. (1962): ‘Piaget, Behavior Theory, and Intelligence’, Monographs of the Society for Research in Child Development 27: 113–126.CrossRefGoogle Scholar
  114. Stopher, M. A., Marcus, E. A., Nolen, T. C. Rankin, C. H. & Carew, T. J. (1991): ‘Learning and memory in Aplysia: A combined developmental and simple systems approach’. In: Shair, H. N. Barr G. A. & Myron, H. A. (eds.): Developmental Psychobiology: New Methods and Changing Concepts, Oxford: Oxford University Press.Google Scholar
  115. Stotz, K. (2006): ‘Molecular epigenesis: distributed specificity as a break in the Central Dogma’, History and Philosophy of the Life Sciences 28: 527–544.Google Scholar
  116. Stotz, K. (2008): ‘The ingredients for a postgenomic synthesis of nature and nurture’, Philosophical Psychology 21: 359–381.CrossRefGoogle Scholar
  117. Stotz, K. (2010): ‘Human nature and cognitive-developmental niche construction’, Phenomenology and the Cognitive Sciences 9: 483.Google Scholar
  118. Subiaul, F., Cantlon, J. F., Holloway, R. L. Terrace, H. S. (2004): ‘Cognitive Imitation in Rhesus Macaques’, Science 305: 407–410.CrossRefGoogle Scholar
  119. Sweatt, J. D. (2009): ‘Experience-Dependent Epigenetic Modifications in the Central Nervous System’, Biological Psychiatry 65: 191–197.CrossRefGoogle Scholar
  120. Szyf, M., McGowan, P. O. & Meaney, M. J. (2008): ‘The Social Environment and the Epigenome’, Environmental and Molecular Mutagenesis 49: 46–60.CrossRefGoogle Scholar
  121. Tagkopoulos, I., Liu, Y. Tavazoie, S. (2008): ‘Predictive behavior within microbial genetic networks’, Science 320: 1313–1317.CrossRefGoogle Scholar
  122. Thelen, E. (1995): ‘Time-scale dynamics and the development of an embodied cognition’. In: Port R. F. & van Gelder T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition, Cambridge (MA): MIT Press.Google Scholar
  123. Thorndike, E. L. (1911): Animal Intelligence, Darien (CT): Hafner.Google Scholar
  124. Timberlake, W. (2002): ‘Niche-related learning in laboratory paradigms: the case of maze behavior in Norway rats’, Behavioural Brain Research 134 134: 355–374.CrossRefGoogle Scholar
  125. Tomasello, M. (2000): The Cultural Origins of Human Cognition, Cambridge (MA): Harvard University Press.Google Scholar
  126. Tomasello, M. Call, J. (2004): ‘The role of humans in the cognitive development of apes revisited’, Animal Cognition, 7:213–215.CrossRefGoogle Scholar
  127. Turkheimer, E., Goldsmith, H. H. & Gottesman, I. I. (1995): ‘Commentary’’ Human Development 38: 142–153.CrossRefGoogle Scholar
  128. Turkheimer, E. & Gottesman, I. I. (1991): ‘Individual Differences and the Canalization of Human Behavior’, Developmental Psychology 27: 18–22.CrossRefGoogle Scholar
  129. Waddington, C. H. (1942): ‘Canalisation of development and the inheritance of acquired characters’, Nature 150: 563–565.CrossRefGoogle Scholar
  130. Waters, C. K. (2007): ‘Causes that make a difference’, Journal of Philosophy CIV: 551–579.Google Scholar
  131. West, M. J. (2003): ‘The case for developmental ecology’, Animal Behaviour 66: 617–622.CrossRefGoogle Scholar
  132. West, M. J. & King, A. P. (1987): ‘Settling Nature and Nurture into an Ontogenetic Niche’, Developmental Psychobiology 20: 549–562.CrossRefGoogle Scholar
  133. West, M. J. & King, A. P. (2008): ‘Deconstructing innate illusions: Reflections on nature-nurture-niche from an unlikely source’, Philosophical Psychology 21: 383–395.CrossRefGoogle Scholar
  134. West, M. J., King, A. P. Arberg, A. A. (1988): ‘The Inheritance of Niches’. In: Blass, E. M. (ed.): Handbook of Behavioral Neurobiology: Plenum Press.Google Scholar
  135. West, M. J., King, A. P. & Duff, M. A. (1990): ‘Communicating about Communicating: When Innate Is Not Enough’, Developmental Psychobiology 23: 585–598.CrossRefGoogle Scholar
  136. West-Eberhard, M. J. (2003): Developmental Plasticity and Evolution, Oxford: Oxford University Press.Google Scholar
  137. Wheeler, M. & Clark, A. (2008): ‘Culture, embodiment and genes: unravelling the triple helix’, Philosophical Transactions of the Royal Society B 363: 3563–3575.CrossRefGoogle Scholar
  138. Wood, M. A., Hawk, J. D. & Abel, T. (2006): ‘Combinatorial chromatin modifications and memory storage: A code for memory?’ Learning and Memory 13: 221–244.Google Scholar
  139. Zimmer, C. (2008): Microcosm: E. coli and the New Science of Life, New York: Pantheon Books.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of SydneySydneyAustralia
  2. 2.History and Philosophy of Science, and Cognitive Science ProgramIndiana UniversityBloomingtonUSA

Personalised recommendations