Skip to main content

Genetically Modified Plants and Bees

  • Chapter
  • First Online:

Abstract

Genetically modified crops which have opened new avenues of species alteration has been accompanied by concerns of their adverse effects on nontarget organisms such as bees. GM crops are commercially modified for pest and or herbicide resistance. Transgenes such as BT may be expressed in pollen and in the plant parts and secretions collected by bees. Available information suggests that crops transformed with genes coding for Bt proteins donot harm bees. Similarly, herbicide resistant crops are not likely to pose direct toxicity to bees yet greater weed control in herbicide resistant crops may be responsible foe lower bee abundance in these crops than the non transformed ones. However, reduced use of pesticides with insect resistant GM crops and reduced tillage that is possible with herbicide resistant crops could be beneficial to bee populations compared to conventional agriculture. Evidently risk of GM crops should be assessed on a case by case basis in relation to feasible alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambrose JT, Schultheis HR, Bambara SB, Mangum W (1995) An evaluation of selected commercial bee attractants in the pollination of cucumbers and watermelons. Am Bee J 135(4):267–272

    Google Scholar 

  • Amos B (2009) Death of the bees: GMO crops and the decline of bee colonies in North America. http://www.globalresearch.ca/index.php?context=vaandaid=8436 7 von 7 29.03.2009 21:59

  • Anon A (1998) MAFF Project No. 2B 067. Honey from genetically modified plants: integrity of DNA, and entry of GM-derived proteins into the food chain via honey. Laboratory of the Government Chemist, London

    Google Scholar 

  • Anon B (2000) GM contamination of honey. Available at http://www.greenpeace.se/np/s/NPS_pdf/Contaminationofhoney.pdf

  • Anon C (2000) Press release: GM trials threaten UK honey. Available at http://www.foe.co.uk/pubsinfo/infoteam/pressrel/2000/20000516185312.html

  • Anon R (2001a) Report of the royal commission on genetic modification. Available at http://www.gmcommission.govt.nz/RCGM/index.html

  • Anon V (2001b) Bt plant-incorporated protectants. Biopesticides registration action document, United States Environmental Protection Agency, 29 Sept 2001. Available at http://www.epa.gov/oppbppd1/biopesticides/otherdocs/bt_brad/Bt_BRAD_II.pdf

  • Arpaia S (1996) Ecological impacts of Bt-transgenic plants: assessing possible effects of CryIIIB on honeybee (Apis mellifera L.) colonies. J Genet Breed 50:315–319

    CAS  Google Scholar 

  • Arun J, Panchali B, Arumugam N, Vibha G, Burma PK, Deepak P, Jagannath A, Bandyopadhyay P, Gupta V, Pental D (2001) The use of a spacre DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8(1):11–23

    Article  Google Scholar 

  • Atkins EL, Macdonald RL, Greywood-Hale EA (1975) Repellent additives to reduce pesticide hazards to honey bees: field tests. Environ Entomol 4(2):207–210

    CAS  Google Scholar 

  • Babendreier D, Kalberer N, Romeis J, Fluri P, Bigler F (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35:293–300

    Article  Google Scholar 

  • Babendreier D, Kalberer NM, Romeis J, Fluri P, Mulligan E, Bigler F (2005) Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 36:585–594

    Article  CAS  Google Scholar 

  • Babendreier D, Romeis J, Bigler F, Fluri P (2006) Neue erkenntnisse zu möglichen auswirkungen von transgenem bt-mais auf bienen. Forschungsanstalt agroscope liebefeld-posieux alp, Schweiz

    Google Scholar 

  • Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610

    Article  PubMed  CAS  Google Scholar 

  • Bailey J, Scott-Dupree C, Harris R, Tolman J, Harris B (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie 36:623–633

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1973) Amino acids in nectar and their evolutionary significance. Nature 241:543–545

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1977) Intraspecific constancy of floral nectar amino acid complements. Bot Gaz 138:183–191

    Article  CAS  Google Scholar 

  • Balfourier F, Imbert C, Charmet G (2000) Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet 101(1–2):131–138

    Article  CAS  Google Scholar 

  • Belletti A, Zani A (1981) A bee attractant for carrots grown for seed. Sementi Elette 27(5):23–27

    Google Scholar 

  • Beversdorf WD (1993) Traditional crop breeding practice: an historical review to serve as a baseline for assessing the role of modern biotechnology. Paris Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Bohan DA, Boffey CWH, Brooks DR, Clark SJ, Dewar AM, Firbank LG, Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (2005) Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc R Soc Biol sci 272:463–474

    Article  Google Scholar 

  • Bonadé Bottino M, Girard C, Le Métayer M, Picard-Nizou AL, Sandoz G, Lerin J, Pham-Delègue MH, Jouanin L (1998) Effects of transgenic oilseed rape expressing proteinase inhibitors on pest and beneficial insects. In: Proceedings of the international symposium on Brassicas. Acta Hort 459, pp 235–239

    Google Scholar 

  • Bourn D, Newton B, Campbell H (1999) Strategies for ‘Greening’ the New Zealand honey industry. An evaluation of the development of organic and other standards. In: Studies of rural sustainability research report no. 8. Department of Anthropology, University of Otago, Dunedin

    Google Scholar 

  • Brødsgaard et al. (2001) Environmental risk assessment of transgenic plants using honey bee larvae. Abstracts of the XXXVII international apicultural congress 28 Oct–1 Nov 2001, Durban, South Africa. Apimondia 2001. Produced by Document Transformation Technologies

    Google Scholar 

  • Bryant T (1987) Honey filtration unit. N Z Beekeeper 196:25–26

    Google Scholar 

  • Burgett M, Fisher GC (1979) An evaluation of Beeline as a pollinator attractant on red clover. Am Bee J 119(5):356–357

    Google Scholar 

  • Butts KM (1991) Bee attractants: improving strawberry quality? Citrus and Vegetable Magazine, 55(3,12):16–17

    Google Scholar 

  • Carter C, Graham RA, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Sadava DE (2003) Plants, genes and crop biotechnology, 2nd edn. Jones & Bartlett, Boston

    Google Scholar 

  • Christeller JT, Farley PC, Ramsay RJ, Sullivan PA, Laing WA (1998) Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254(1):160–167

    Article  PubMed  CAS  Google Scholar 

  • Christey M, Woodfield D (2001) Coexistence of genetically modified and nongenetically modified crops. Report prepared for the Ministry for the Environment. Crop and Food Research Confidential Report No. 427

    Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16(4):345–348

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95(1–2):125–131

    Article  Google Scholar 

  • De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  Google Scholar 

  • De Wael L, van Laere O (1989) Toxicity and the repellent activity of synthetic pyrethroids towards the honeybee (Apis mellifera L.). In: Proceedings of the XXXIst international congress of apiculture, Warsaw, Poland, 19–25 Aug 1987. Published by Bucharest, Apimondia Publishing House, Romania, pp 209–216

    Google Scholar 

  • Diamand E (1999) Briefing. Bees, honey and genetically modified crops. Available at http://www.foe.co.uk/resource/briefings/bees_honey_gm_crops.html

  • Eady C, Twell D, Lindsey K (1995) Pollen viability and transgene expression following storage in honey. Transgenic Res 4:226–231

    Article  PubMed  CAS  Google Scholar 

  • Emberlin J, Brooks S (2001) Pollen movement from a genetically modified oilseed rape crop. Available on request from info@foe.co.uk

    Google Scholar 

  • Erickson EH, Erickson BH, Flottum PK, Wyman JA, Wedberg JL, Page RE (1997) Effects of selected insecticide formulations, phased application and colony management strategies on honey bee mortality in processing sweetcorn. J Apic Res 36(1):3–13

    CAS  Google Scholar 

  • Fries I (1985) Honeybees and cypermethrin/deltamethrin in fields of flowering seed rape. Vaxtskyddsrapporter 32:169–178

    CAS  Google Scholar 

  • Gary NE (1992) Activities and behavior of honey bees. In: Graham JM (ed) The hive and the honey bee, vol 8. Dadant and Sons, Hamilton, pp 269–372

    Google Scholar 

  • Goodwin RM (1997) Feeding sugar syrup to honey bee colonies to improve pollination: a review. Bee World 78(2):56–62

    Google Scholar 

  • Goodwin RM, Houten T (1991) Poisoning of honey bees (Apis mellifera) by sodium flouroacetate (1080) in baits. N Z J Zool 18(1):45–51

    Google Scholar 

  • Goodwin M, Van Eaton C (1999) Elimination of American foulbrood without the use of drugs. A practical manual for beekeepers. National Beekeepers Association of New Zealand, Inc, Wellington

    Google Scholar 

  • Greenplate J (1997) Response to reports of early damage in 1996 commercial Bt transgenic cotton (Bollgard™) plantings. Soc Invert Pathol Newsl 29:15–18

    Google Scholar 

  • Guo ZB, Lin JX (1997) Genetic engineering of male sterile and fertility restorer in soybean. Soybean Genet Newsl 24:50

    Google Scholar 

  • Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apic Res 42:77–81

    Google Scholar 

  • Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scot RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, El B, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philos Trans R Soc London Ser B Biol Sci 358:1863–1877

    Article  CAS  Google Scholar 

  • Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (2005) Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc R Soc B Biol Sci 272:463–474

    Article  Google Scholar 

  • Hellmich RL, Siegried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T, Bidne KG, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc Nat Acad Sci USA 98(21):11925–11930

    Article  PubMed  CAS  Google Scholar 

  • Henning JA, Peng YS, Montague MA, Teuber LR (1992) Honey bee (Hymenoptera: Apidae) behavioral response to primary alfalfa (Rosales: Fabaceae) floral volatiles. J Econ Entomol Entomol Soc Am 85(1):233–239

    CAS  Google Scholar 

  • Herbert EW Jr (1992) Honey bee nutrition. In: Graham JM (ed) The hive and the honey bee. Dadant and Sons, Hamilton

    Google Scholar 

  • Huang ZY, Hanley AV, Pett WL, Langenberger M, Duan JJ (2004) Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees. J Econ Entomol 97:1517–1523

    Article  PubMed  Google Scholar 

  • Imura Y, Seki H, Toyoda K, Ichinose Y, Shiraishi T, Yamada T (2001) Contrary operations of Box-I element of pea phenylalanine ammonia-lyase gene 1 promoter for organ-specific expression. Plant Physiol Biochem 39(5):355–362

    Article  CAS  Google Scholar 

  • James C (2000) ISAAA Briefs No. 21 – 2000 preview. Global status of commercialised transgenic crops: 2000. Available at http://www.isaaa.org/publications/briefs/Brief_21.htm

  • James C (2005) Global status of commercialized biotech/GM crops: 2005, ISAAA Brief No. 34. International Service for the Acquisition of Agri-biotech Applications, Ithaca

    Google Scholar 

  • James CM, Barrett JA, Russell SJ, Gibby M (2001) A rapid PCR based method to establish the potential for paternal inheritance of chloroplasts in Pelargonium. Plant Mol Biol Rep 19(2):163–167

    Article  CAS  Google Scholar 

  • Jesse LCH, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia. Available at athene.em.springer.de

    Google Scholar 

  • Jouanin L, Girard C, Bonadé-Bottino M, Le Metayer M, Picard Nizou A, Lerin J, Pham-Delègue M (1998) Impact of oilseed rape expressing proteinase inhibitors on coleopteran pests and honeybees. Cahiers Agric 7:531–536

    Google Scholar 

  • Keil S, Romeis J, Fluri P, Bigler F (2002) Sind honigbienen durch den einsatz von insektenresistenten transgenen pflanzen einem risiko ausgesetzt? Forschungsanstalt agroscope liebefeld posieux alp, schweizerisches zentrum für bienenforschung

    Google Scholar 

  • Kent J, Richardson TE (1997) Fluorescently labelled, multiplexed chloroplast microsatellites for high throughput paternity analysis in Pinus radiata. N Z J For Sci 27(3):305–312

    CAS  Google Scholar 

  • Knee EM, Gong FC, Gao MS, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14(6):775–784

    Article  PubMed  CAS  Google Scholar 

  • Kozeil MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren G, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200

    Article  Google Scholar 

  • Kruger C, Hell R, Stephan UW (2001) A metal-binding LEA protein trafficks micronutrients in the phloem of Ricinus communis L. Plant nutrition: food security and sustainability of agro ecosystems through basic and applied research. In: Horst WJ, Schenk MK, Burkert A, Claassen N, Flessa H, Frommer WB, Goldbach H Olfs HW, Romheld V et al. (eds) Fourteenth international plant nutrition colloquium, Hannover, Germany. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 194–195

    Google Scholar 

  • Lemmetyinen J, Pennanen T, Lannenpaa M, Sopanen T (2001) Prevention of flower formation in dicotyledons. Mol Breed 7(4):341–350

    Article  CAS  Google Scholar 

  • Li SG, Liu YL, Zhu F, Luo YY (1997) Genetically-engineered male sterile tobacco plants and their sensitivity to temperature. Acta Bot Sin 39(3):231–235

    Google Scholar 

  • Li L, Qi LW, Han YF, Wang YC, Li WB (2000) A study on the introduction of male sterility of antiinsect transgenic Populus nigra by the TA29-Barnase gene. Sci Silvae Sin 36(1):28–32

    Google Scholar 

  • Lin HY, Chiueh LC, Shih YC (2000) Detection of genetically modified soybeans and maize by the polymerase chain reaction method. J Food Drug Anal 8(3):200–207

    CAS  Google Scholar 

  • Liu JH, Selinger LB, Cheng KJ et al (1997) Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Molecular Breeding 3:463–470

    Google Scholar 

  • Liu JH, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) Arabidopsis thaliana SOS2gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci USA 97:3730–3734

    Google Scholar 

  • Liu B, Xu CG, Yan FM, Gong RZ (2005) The impacts of the pollen of insect-resistant transgenic cotton on honeybees. Biodivers Conserv 14:3487–3496

    Article  Google Scholar 

  • Liu B, Shu C, Xue K, Zhou KX, Li XG, Liu DD, Zheng YP, Xu CR (2009) The oral toxicity of the transgenic Bt  +  CpTI cotton pollen to honey bees (Apis mellifera). Ecotoxicol Environ Safe 72:1163–1169

    Article  CAS  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie KE, Averill AL (1992) A new honey bee attractant, the queen mandibular pheromone. Cranberries 56:13–14

    Google Scholar 

  • Malone LA (2004) Potential effects of GM crops on honey bee health. Bee World 85:29–36

    Google Scholar 

  • Malone LA, Pham-Delègue MH (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304

    Article  CAS  Google Scholar 

  • Malone LA, Pham-Delègue MH (2002) Using proteins to assess the potential impacts of genetically modified plants on honey bees. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals, vol 14. Taylor & Francis, London, pp 290–311

    Google Scholar 

  • Malone LA, Burgess EPJ, Stefanovic D (1999) Effects of a bacillus thuringiensis toxin, two bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera l.) Survival and food consumption. Apidologie 30(6):465–473

    Article  CAS  Google Scholar 

  • Malone LA, Burgess EPJ, Gatehouse HS, Voisey CR, Tregidga EL, Philip BA (2001) Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32:57–68

    Article  CAS  Google Scholar 

  • Malone LA, Todd JH, Burgess EPJ, Christeller JT (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35:655–664

    Article  CAS  Google Scholar 

  • Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82(2):60–75

    Google Scholar 

  • Margalith R, Lensky Y, Rabinowitch HD, Rapp R (1984) An evaluation of Beeline as a honeybee attractant to cucumbers and its effect on hybrid seed production. J Apic Res 23(1):50–54

    Google Scholar 

  • Matheson A (1997) Practical beekeeping in New Zealand. GP Publications, Wellington

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agriculture intensification and ecosystem properties. Science 277:504–509

    Google Scholar 

  • Mayer DF, Britt RL, Lunden JD (1989) Evaluation of Bee Scent as a honey bee attractant. Am Bee J 129(1):41–42

    Google Scholar 

  • McKinnon GE, Vaillancourt RE, Tilyard PA, Potts BM (2001) Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome 44(5):831–835

    PubMed  CAS  Google Scholar 

  • McLaren GF, Fraser JA, Grant JE (1992) Pollination of apricots. Orchardist N Z 65(8,20):22–23

    Google Scholar 

  • Menzies AR, Osman ME, Malik AA, Baldwin TC (1996) A comparison of the physicochemical and immunological properties of the plant gum exudates of Acacia Senegal (gum arabic) and Acacia seyal (gum tahla). Food Addit Contam 13(8):991–999

    Article  PubMed  CAS  Google Scholar 

  • Moar NT (1985) Pollen analysis of New Zealand honey. N Z J Agric Res 28:39–70

    Article  Google Scholar 

  • Mohr KI, Tebbe CC (2007) Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. Appl Microbiol Biotechnol 75(3):573–582, 2. 2. 2007

    Article  PubMed  CAS  Google Scholar 

  • Molan P (1998) The limitations of the methods of identifying the floral source of honeys. Bee World 79(2):59–68

    Google Scholar 

  • Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32(3):555–563

    Article  CAS  Google Scholar 

  • Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15(3):871–881

    Article  Google Scholar 

  • Moyes CL, Dale PJ (1999) MAFF Research Project OF0157. Organic farming and gene transfer from genetically modified crops. Available at http://www.gmissues.org/orgreport.htm

  • Munro M (2002) Genetic threats blowin’ in the wind: scientists warm modified crops are ‘escaping and going rogues’ (June 7 National Post). Available on request from WansbroughD@maf.govt.nz

    Google Scholar 

  • Neira MC, Lobos NS, Riveros MG, Carrillo RL, Pessot RZ, Mundaca NB (1997) Insect fauna associated with flowers of raspberries (Rubus idaeus L., cv Meeker) and evaluation of the pollination activity of Apis mellifera L. under the influence of a pheromonal attractant. Rev Chilena Entomol 24:37–44

    Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Santa-Cruz S (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Blackburn M, Ding B (2001) Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant Microbe Interact 14(7):905–909

    Article  PubMed  CAS  Google Scholar 

  • Parent G, Pearen D (1999) 1998/99 Canadian honey situation and trends. Available at http://www.agr.gc.ca/misb/hort/honey.html

  • Peumans WJ, Smeets K, van Nerum K, van Leuven F, van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  • Pham-Delègue MH, Jouanin L, Sandoz JC (2002) Direct and indirect effects of genetically modified plants on the honey bee. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals, vol 15. Taylor & Francis, London, pp 312–326, ca 118(3): 313–319

    Chapter  Google Scholar 

  • Pierre J, Marsault D, Genecque E, Renard M, Champolivier J, Pham-Delègue MH (2003) Effects of herbicide-tolerant transgenic oilseed rape genotypes on honey bees and other pollinating insects under field conditions. Entomol Exp Appl 108:159–168

    Article  Google Scholar 

  • Planet Ark. Canadian Growers Warn UK Farmers of GMO Crop Risks. 4 Nov 2003. 15 Mar 2009. http://www.planetark.com/dailynewsstory.cfm/newsid/22745/story.htm

  • Porlingis J (1997) Techniques to increase the attractiveness of kiwi flowers to honey bees. In: Tsirakoglou V, Thrasyvoulou A, Hatjina F, Sfakiotakis E (ed) Proceedings of the third international symposium on Kiwifruit, Thessaloniki, Greece, 19–22 Sept 1995. Acta Hort 444:439–443

    Google Scholar 

  • Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acrythosiphon pisum. Entomol Exp Appl 76:143–155

    Article  Google Scholar 

  • Rajotte EG, Fell RD (1982) A commercial bee attractant ineffective in enhancing apple pollination. Hortscience 17(2):230–231

    Google Scholar 

  • Ramirez-Romero R, Josette C, Pham-Delègue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611

    Article  CAS  Google Scholar 

  • Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008) Does Cry1Ab protein affect learning performance of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Safe 70:327–333

    Article  CAS  Google Scholar 

  • Ramsay G, Thompson CE, Neilson S, Mackay GR (1999) Honey bees as vectors of GM oilseed rape pollen. In: Lutman PJW (ed) Gene flow and agriculture: relevance for transgenic crops. BCPC symposium proceedings no. 72, BCPC, London, pp 209–214

    Google Scholar 

  • Rieth JP (1986) The repellent effect of pyrethroid insecticides on honey bees. PhD dissertation, University of Arizona, USA. X  +  100 pp

    Google Scholar 

  • Rieth JP, Levin MD (1987) The pyrethroid insecticide hazard to honey bees. Am Bee J 127(11):789–790

    Google Scholar 

  • Rieth JP, Levin MD (1988) The repellent effect of two pyrethroid insecticides on the honey bee. Physiol Entomol 13(2):213–218

    Article  CAS  Google Scholar 

  • Rosell RC, Torres JI, Brown JK (1999) Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva, haemolymph, and honeydew. Phytopathology 89(3):239–246

    Article  PubMed  CAS  Google Scholar 

  • Rosellini D, Pezzotti M, Veronesi F (2001) Characterization of transgenic male sterility in alfalfa. Euphytica 118(3):313–319

    Article  CAS  Google Scholar 

  • Roy DB, Bohan DA, Haughton AJ, Hill MO, Jl O, Clark SJ, Perry JN, Rothery P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc London Ser B Biol Sci 358(1439):1879–1898

    Article  CAS  Google Scholar 

  • Salvucci ME, Rosell RC, Brown JK (1998) Uptake and metabolism of leaf proteins by the silverleaf whitefly. Arch Insect Biochem Physiol 39:155–165

    Article  CAS  Google Scholar 

  • Sandström JP, Moran NA (2001) Amino acid budgets in three aphid species using the same host plant. Physiol Entomol 26:202–211

    Article  Google Scholar 

  • Santamaria M, Thomson CJ, Read ND, Loake GJ (2001) The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Mol Biol 47(5):641–652

    Article  PubMed  CAS  Google Scholar 

  • Sanvido O, Stark M, Romeis J, Bigler F (2006) Ecological impacts of genetically modified crops. Experiences from ten years of experimental field research and commercial cultivation. Art-schriftenreihe nr. 01, agroscope reckenholz-tänikon research station art, switzerland

    Google Scholar 

  • Schobert C, Gottschalk M, Kovar DR, Staiger CJ, Yoo BC, Lucas WJ (2000) Characterization of Ricinus communis phloem profilin, RcPRO1. Plant Mol Biol 42(5):719–730

    Article  PubMed  CAS  Google Scholar 

  • Scott SE, Wilkinson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17(4):390–393

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-cholorbenzoic acid. J Agric Food Chem 46(1):5–7

    Article  PubMed  CAS  Google Scholar 

  • Sick M, Kuhne S, Hommel B (2004) Transgenic rape pollen in larval food of bees – component of a model study on the probability of horizontal plant-to-bacteria gene transfer. [original title: transgener rapspollen in der bienennahrung – teil einer modelluntersuchung zur wahrscheinlichkeit des horizontalen gentransfers von pflanzen auf bakterien]. Mitteilungen Deutschen Gesellschaft Allgemeine Angew Entomol 14:423–426

    Google Scholar 

  • Singh PB, Sinha SN (1997) Effect of Bee-Q on honeybee visit and seed yield of hybrid sunflower. Seed Res 24(2):151–153

    Google Scholar 

  • Singh S, Saini K, Jain KL (1999) Quantitative comparison of lipids in some pollens and their phagostimulatory effects in honey bees. J Apic Res 38(1–2):87–92

    CAS  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen, biology biochemistry management. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Stanley-Horn DE, Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R, Jesse LCH, Losey JE, Obrycki JJ, Lewis L (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Nat Acad Sci USA 98(21):11931–11936

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Prakash CS (1998) Chloroplast-transgenic plants are not a gene flow panacea. Nat Biotechnol 16(5):401

    Article  PubMed  CAS  Google Scholar 

  • Tew JE (1992) Honey and wax – a consideration of production, processing and packaging techniques. In: Graham JM (ed) The hive and the honey bee, vol 15. Dadant and Sons, Hamilton, pp 657–704

    Google Scholar 

  • Tilman D, Fargione J, Wolff B et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Google Scholar 

  • Tuha M, Simuth J (1991) Some properties of water-soluble proteins of propolis. Farm Obz 60(12):539–542

    CAS  Google Scholar 

  • U.S. Census Bureau’s (2008) Statistical Abstract – Looking at America’s. The Flowing Data Book. Data http://flowingdata.com/2008/05/21/us-census-bureaus-2008-statistical-abstract-looking-at-americas-data/

    Google Scholar 

  • Van Praagh JP, von der Ohe W (1982) The possibility of masking the repellent effect of plant protection compounds not dangerous to bees. Gartenbauwissenschaft 47(3):114–115

    Google Scholar 

  • Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI (2005) Will transgenic plants adversely affect the environment? J Biosci 30:515–548

    Article  PubMed  CAS  Google Scholar 

  • Wehrmann A, van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14(10):1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Williams IH (2001) Bee-mediated pollen and gene flow from GM plants. In: Benedek P, Richards KW (eds) Proceedings 8th pollination symposium. Acta Hort 561:25–33

    Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Zhang XG, Liu RL, Kang LY, Zhu YG, Tian P (1998) Construction of expression vectors of male sterility and its fertility restoration in rice (Oryza sativa L.). Acta Agron Sin 24(5):629–634

    Google Scholar 

  • Zhu YY, Gong J, Wu XG, Yang HJ, Shen GZ, Wang XQ, Yin LQ, Lu GH, Wang JA, Wan XS (2001) Preliminary study on flower characteristics and segregation of male sterility of transgenic plants with TA29-Barnase in cabbage (Brassica oleracea var. capitata). Acta Agr Shanghai 17(1):79–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Genetically Modified Plants and Bees. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_20

Download citation

Publish with us

Policies and ethics