Genetically Modified Plants and Bees

  • Dharam P. Abrol


Genetically modified crops which have opened new avenues of species alteration has been accompanied by concerns of their adverse effects on nontarget organisms such as bees. GM crops are commercially modified for pest and or herbicide resistance. Transgenes such as BT may be expressed in pollen and in the plant parts and secretions collected by bees. Available information suggests that crops transformed with genes coding for Bt proteins donot harm bees. Similarly, herbicide resistant crops are not likely to pose direct toxicity to bees yet greater weed control in herbicide resistant crops may be responsible foe lower bee abundance in these crops than the non transformed ones. However, reduced use of pesticides with insect resistant GM crops and reduced tillage that is possible with herbicide resistant crops could be beneficial to bee populations compared to conventional agriculture. Evidently risk of GM crops should be assessed on a case by case basis in relation to feasible alternatives.


Genetically Modify Oilseed Rape Genetically Modify Crop Honey Sample Genetically Modify Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambrose JT, Schultheis HR, Bambara SB, Mangum W (1995) An evaluation of selected commercial bee attractants in the pollination of cucumbers and watermelons. Am Bee J 135(4):267–272Google Scholar
  2. Amos B (2009) Death of the bees: GMO crops and the decline of bee colonies in North America. 7 von 7 29.03.2009 21:59
  3. Anon A (1998) MAFF Project No. 2B 067. Honey from genetically modified plants: integrity of DNA, and entry of GM-derived proteins into the food chain via honey. Laboratory of the Government Chemist, LondonGoogle Scholar
  4. Anon B (2000) GM contamination of honey. Available at
  5. Anon C (2000) Press release: GM trials threaten UK honey. Available at
  6. Anon R (2001a) Report of the royal commission on genetic modification. Available at
  7. Anon V (2001b) Bt plant-incorporated protectants. Biopesticides registration action document, United States Environmental Protection Agency, 29 Sept 2001. Available at
  8. Arpaia S (1996) Ecological impacts of Bt-transgenic plants: assessing possible effects of CryIIIB on honeybee (Apis mellifera L.) colonies. J Genet Breed 50:315–319Google Scholar
  9. Arun J, Panchali B, Arumugam N, Vibha G, Burma PK, Deepak P, Jagannath A, Bandyopadhyay P, Gupta V, Pental D (2001) The use of a spacre DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8(1):11–23CrossRefGoogle Scholar
  10. Atkins EL, Macdonald RL, Greywood-Hale EA (1975) Repellent additives to reduce pesticide hazards to honey bees: field tests. Environ Entomol 4(2):207–210Google Scholar
  11. Babendreier D, Kalberer N, Romeis J, Fluri P, Bigler F (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35:293–300CrossRefGoogle Scholar
  12. Babendreier D, Kalberer NM, Romeis J, Fluri P, Mulligan E, Bigler F (2005) Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 36:585–594CrossRefGoogle Scholar
  13. Babendreier D, Romeis J, Bigler F, Fluri P (2006) Neue erkenntnisse zu möglichen auswirkungen von transgenem bt-mais auf bienen. Forschungsanstalt agroscope liebefeld-posieux alp, SchweizGoogle Scholar
  14. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610PubMedCrossRefGoogle Scholar
  15. Bailey J, Scott-Dupree C, Harris R, Tolman J, Harris B (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie 36:623–633CrossRefGoogle Scholar
  16. Baker HG, Baker I (1973) Amino acids in nectar and their evolutionary significance. Nature 241:543–545CrossRefGoogle Scholar
  17. Baker HG, Baker I (1977) Intraspecific constancy of floral nectar amino acid complements. Bot Gaz 138:183–191CrossRefGoogle Scholar
  18. Balfourier F, Imbert C, Charmet G (2000) Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet 101(1–2):131–138CrossRefGoogle Scholar
  19. Belletti A, Zani A (1981) A bee attractant for carrots grown for seed. Sementi Elette 27(5):23–27Google Scholar
  20. Beversdorf WD (1993) Traditional crop breeding practice: an historical review to serve as a baseline for assessing the role of modern biotechnology. Paris Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  21. Bohan DA, Boffey CWH, Brooks DR, Clark SJ, Dewar AM, Firbank LG, Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (2005) Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc R Soc Biol sci 272:463–474CrossRefGoogle Scholar
  22. Bonadé Bottino M, Girard C, Le Métayer M, Picard-Nizou AL, Sandoz G, Lerin J, Pham-Delègue MH, Jouanin L (1998) Effects of transgenic oilseed rape expressing proteinase inhibitors on pest and beneficial insects. In: Proceedings of the international symposium on Brassicas. Acta Hort 459, pp 235–239Google Scholar
  23. Bourn D, Newton B, Campbell H (1999) Strategies for ‘Greening’ the New Zealand honey industry. An evaluation of the development of organic and other standards. In: Studies of rural sustainability research report no. 8. Department of Anthropology, University of Otago, DunedinGoogle Scholar
  24. Brødsgaard et al. (2001) Environmental risk assessment of transgenic plants using honey bee larvae. Abstracts of the XXXVII international apicultural congress 28 Oct–1 Nov 2001, Durban, South Africa. Apimondia 2001. Produced by Document Transformation TechnologiesGoogle Scholar
  25. Bryant T (1987) Honey filtration unit. N Z Beekeeper 196:25–26Google Scholar
  26. Burgett M, Fisher GC (1979) An evaluation of Beeline as a pollinator attractant on red clover. Am Bee J 119(5):356–357Google Scholar
  27. Butts KM (1991) Bee attractants: improving strawberry quality? Citrus and Vegetable Magazine, 55(3,12):16–17Google Scholar
  28. Carter C, Graham RA, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216PubMedCrossRefGoogle Scholar
  29. Chrispeels MJ, Sadava DE (2003) Plants, genes and crop biotechnology, 2nd edn. Jones & Bartlett, BostonGoogle Scholar
  30. Christeller JT, Farley PC, Ramsay RJ, Sullivan PA, Laing WA (1998) Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254(1):160–167PubMedCrossRefGoogle Scholar
  31. Christey M, Woodfield D (2001) Coexistence of genetically modified and nongenetically modified crops. Report prepared for the Ministry for the Environment. Crop and Food Research Confidential Report No. 427Google Scholar
  32. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16(4):345–348PubMedCrossRefGoogle Scholar
  33. De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95(1–2):125–131CrossRefGoogle Scholar
  34. De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862CrossRefGoogle Scholar
  35. De Wael L, van Laere O (1989) Toxicity and the repellent activity of synthetic pyrethroids towards the honeybee (Apis mellifera L.). In: Proceedings of the XXXIst international congress of apiculture, Warsaw, Poland, 19–25 Aug 1987. Published by Bucharest, Apimondia Publishing House, Romania, pp 209–216Google Scholar
  36. Diamand E (1999) Briefing. Bees, honey and genetically modified crops. Available at
  37. Eady C, Twell D, Lindsey K (1995) Pollen viability and transgene expression following storage in honey. Transgenic Res 4:226–231PubMedCrossRefGoogle Scholar
  38. Emberlin J, Brooks S (2001) Pollen movement from a genetically modified oilseed rape crop. Available on request from Scholar
  39. Erickson EH, Erickson BH, Flottum PK, Wyman JA, Wedberg JL, Page RE (1997) Effects of selected insecticide formulations, phased application and colony management strategies on honey bee mortality in processing sweetcorn. J Apic Res 36(1):3–13Google Scholar
  40. Fries I (1985) Honeybees and cypermethrin/deltamethrin in fields of flowering seed rape. Vaxtskyddsrapporter 32:169–178Google Scholar
  41. Gary NE (1992) Activities and behavior of honey bees. In: Graham JM (ed) The hive and the honey bee, vol 8. Dadant and Sons, Hamilton, pp 269–372Google Scholar
  42. Goodwin RM (1997) Feeding sugar syrup to honey bee colonies to improve pollination: a review. Bee World 78(2):56–62Google Scholar
  43. Goodwin RM, Houten T (1991) Poisoning of honey bees (Apis mellifera) by sodium flouroacetate (1080) in baits. N Z J Zool 18(1):45–51Google Scholar
  44. Goodwin M, Van Eaton C (1999) Elimination of American foulbrood without the use of drugs. A practical manual for beekeepers. National Beekeepers Association of New Zealand, Inc, WellingtonGoogle Scholar
  45. Greenplate J (1997) Response to reports of early damage in 1996 commercial Bt transgenic cotton (Bollgard™) plantings. Soc Invert Pathol Newsl 29:15–18Google Scholar
  46. Guo ZB, Lin JX (1997) Genetic engineering of male sterile and fertility restorer in soybean. Soybean Genet Newsl 24:50Google Scholar
  47. Hanley AV, Huang ZY, Pett WL (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apic Res 42:77–81Google Scholar
  48. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scot RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, El B, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philos Trans R Soc London Ser B Biol Sci 358:1863–1877CrossRefGoogle Scholar
  49. Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT (2005) Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc R Soc B Biol Sci 272:463–474CrossRefGoogle Scholar
  50. Hellmich RL, Siegried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T, Bidne KG, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc Nat Acad Sci USA 98(21):11925–11930PubMedCrossRefGoogle Scholar
  51. Henning JA, Peng YS, Montague MA, Teuber LR (1992) Honey bee (Hymenoptera: Apidae) behavioral response to primary alfalfa (Rosales: Fabaceae) floral volatiles. J Econ Entomol Entomol Soc Am 85(1):233–239Google Scholar
  52. Herbert EW Jr (1992) Honey bee nutrition. In: Graham JM (ed) The hive and the honey bee. Dadant and Sons, HamiltonGoogle Scholar
  53. Huang ZY, Hanley AV, Pett WL, Langenberger M, Duan JJ (2004) Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees. J Econ Entomol 97:1517–1523PubMedCrossRefGoogle Scholar
  54. Imura Y, Seki H, Toyoda K, Ichinose Y, Shiraishi T, Yamada T (2001) Contrary operations of Box-I element of pea phenylalanine ammonia-lyase gene 1 promoter for organ-specific expression. Plant Physiol Biochem 39(5):355–362CrossRefGoogle Scholar
  55. James C (2000) ISAAA Briefs No. 21 – 2000 preview. Global status of commercialised transgenic crops: 2000. Available at
  56. James C (2005) Global status of commercialized biotech/GM crops: 2005, ISAAA Brief No. 34. International Service for the Acquisition of Agri-biotech Applications, IthacaGoogle Scholar
  57. James CM, Barrett JA, Russell SJ, Gibby M (2001) A rapid PCR based method to establish the potential for paternal inheritance of chloroplasts in Pelargonium. Plant Mol Biol Rep 19(2):163–167CrossRefGoogle Scholar
  58. Jesse LCH, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia. Available at athene.em.springer.deGoogle Scholar
  59. Jouanin L, Girard C, Bonadé-Bottino M, Le Metayer M, Picard Nizou A, Lerin J, Pham-Delègue M (1998) Impact of oilseed rape expressing proteinase inhibitors on coleopteran pests and honeybees. Cahiers Agric 7:531–536Google Scholar
  60. Keil S, Romeis J, Fluri P, Bigler F (2002) Sind honigbienen durch den einsatz von insektenresistenten transgenen pflanzen einem risiko ausgesetzt? Forschungsanstalt agroscope liebefeld posieux alp, schweizerisches zentrum für bienenforschungGoogle Scholar
  61. Kent J, Richardson TE (1997) Fluorescently labelled, multiplexed chloroplast microsatellites for high throughput paternity analysis in Pinus radiata. N Z J For Sci 27(3):305–312Google Scholar
  62. Knee EM, Gong FC, Gao MS, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14(6):775–784PubMedCrossRefGoogle Scholar
  63. Kozeil MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren G, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200CrossRefGoogle Scholar
  64. Kruger C, Hell R, Stephan UW (2001) A metal-binding LEA protein trafficks micronutrients in the phloem of Ricinus communis L. Plant nutrition: food security and sustainability of agro ecosystems through basic and applied research. In: Horst WJ, Schenk MK, Burkert A, Claassen N, Flessa H, Frommer WB, Goldbach H Olfs HW, Romheld V et al. (eds) Fourteenth international plant nutrition colloquium, Hannover, Germany. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 194–195Google Scholar
  65. Lemmetyinen J, Pennanen T, Lannenpaa M, Sopanen T (2001) Prevention of flower formation in dicotyledons. Mol Breed 7(4):341–350CrossRefGoogle Scholar
  66. Li SG, Liu YL, Zhu F, Luo YY (1997) Genetically-engineered male sterile tobacco plants and their sensitivity to temperature. Acta Bot Sin 39(3):231–235Google Scholar
  67. Li L, Qi LW, Han YF, Wang YC, Li WB (2000) A study on the introduction of male sterility of antiinsect transgenic Populus nigra by the TA29-Barnase gene. Sci Silvae Sin 36(1):28–32Google Scholar
  68. Lin HY, Chiueh LC, Shih YC (2000) Detection of genetically modified soybeans and maize by the polymerase chain reaction method. J Food Drug Anal 8(3):200–207Google Scholar
  69. Liu JH, Selinger LB, Cheng KJ et al (1997) Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Molecular Breeding 3:463–470Google Scholar
  70. Liu JH, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) Arabidopsis thaliana SOS2gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci USA 97:3730–3734Google Scholar
  71. Liu B, Xu CG, Yan FM, Gong RZ (2005) The impacts of the pollen of insect-resistant transgenic cotton on honeybees. Biodivers Conserv 14:3487–3496CrossRefGoogle Scholar
  72. Liu B, Shu C, Xue K, Zhou KX, Li XG, Liu DD, Zheng YP, Xu CR (2009) The oral toxicity of the transgenic Bt  +  CpTI cotton pollen to honey bees (Apis mellifera). Ecotoxicol Environ Safe 72:1163–1169CrossRefGoogle Scholar
  73. Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214PubMedCrossRefGoogle Scholar
  74. Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590PubMedCrossRefGoogle Scholar
  75. MacKenzie KE, Averill AL (1992) A new honey bee attractant, the queen mandibular pheromone. Cranberries 56:13–14Google Scholar
  76. Malone LA (2004) Potential effects of GM crops on honey bee health. Bee World 85:29–36Google Scholar
  77. Malone LA, Pham-Delègue MH (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304CrossRefGoogle Scholar
  78. Malone LA, Pham-Delègue MH (2002) Using proteins to assess the potential impacts of genetically modified plants on honey bees. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals, vol 14. Taylor & Francis, London, pp 290–311Google Scholar
  79. Malone LA, Burgess EPJ, Stefanovic D (1999) Effects of a bacillus thuringiensis toxin, two bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera l.) Survival and food consumption. Apidologie 30(6):465–473CrossRefGoogle Scholar
  80. Malone LA, Burgess EPJ, Gatehouse HS, Voisey CR, Tregidga EL, Philip BA (2001) Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32:57–68CrossRefGoogle Scholar
  81. Malone LA, Todd JH, Burgess EPJ, Christeller JT (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35:655–664CrossRefGoogle Scholar
  82. Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82(2):60–75Google Scholar
  83. Margalith R, Lensky Y, Rabinowitch HD, Rapp R (1984) An evaluation of Beeline as a honeybee attractant to cucumbers and its effect on hybrid seed production. J Apic Res 23(1):50–54Google Scholar
  84. Matheson A (1997) Practical beekeeping in New Zealand. GP Publications, WellingtonGoogle Scholar
  85. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agriculture intensification and ecosystem properties. Science 277:504–509 Google Scholar
  86. Mayer DF, Britt RL, Lunden JD (1989) Evaluation of Bee Scent as a honey bee attractant. Am Bee J 129(1):41–42Google Scholar
  87. McKinnon GE, Vaillancourt RE, Tilyard PA, Potts BM (2001) Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome 44(5):831–835PubMedGoogle Scholar
  88. McLaren GF, Fraser JA, Grant JE (1992) Pollination of apricots. Orchardist N Z 65(8,20):22–23Google Scholar
  89. Menzies AR, Osman ME, Malik AA, Baldwin TC (1996) A comparison of the physicochemical and immunological properties of the plant gum exudates of Acacia Senegal (gum arabic) and Acacia seyal (gum tahla). Food Addit Contam 13(8):991–999PubMedCrossRefGoogle Scholar
  90. Moar NT (1985) Pollen analysis of New Zealand honey. N Z J Agric Res 28:39–70CrossRefGoogle Scholar
  91. Mohr KI, Tebbe CC (2007) Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. Appl Microbiol Biotechnol 75(3):573–582, 2. 2. 2007PubMedCrossRefGoogle Scholar
  92. Molan P (1998) The limitations of the methods of identifying the floral source of honeys. Bee World 79(2):59–68Google Scholar
  93. Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32(3):555–563CrossRefGoogle Scholar
  94. Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15(3):871–881CrossRefGoogle Scholar
  95. Moyes CL, Dale PJ (1999) MAFF Research Project OF0157. Organic farming and gene transfer from genetically modified crops. Available at
  96. Munro M (2002) Genetic threats blowin’ in the wind: scientists warm modified crops are ‘escaping and going rogues’ (June 7 National Post). Available on request from WansbroughD@maf.govt.nzGoogle Scholar
  97. Neira MC, Lobos NS, Riveros MG, Carrillo RL, Pessot RZ, Mundaca NB (1997) Insect fauna associated with flowers of raspberries (Rubus idaeus L., cv Meeker) and evaluation of the pollination activity of Apis mellifera L. under the influence of a pheromonal attractant. Rev Chilena Entomol 24:37–44Google Scholar
  98. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292PubMedCrossRefGoogle Scholar
  99. Oparka KJ, Santa-Cruz S (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347PubMedCrossRefGoogle Scholar
  100. Owens RA, Blackburn M, Ding B (2001) Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant Microbe Interact 14(7):905–909PubMedCrossRefGoogle Scholar
  101. Parent G, Pearen D (1999) 1998/99 Canadian honey situation and trends. Available at
  102. Peumans WJ, Smeets K, van Nerum K, van Leuven F, van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302PubMedCrossRefGoogle Scholar
  103. Pham-Delègue MH, Jouanin L, Sandoz JC (2002) Direct and indirect effects of genetically modified plants on the honey bee. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals, vol 15. Taylor & Francis, London, pp 312–326, ca 118(3): 313–319CrossRefGoogle Scholar
  104. Pierre J, Marsault D, Genecque E, Renard M, Champolivier J, Pham-Delègue MH (2003) Effects of herbicide-tolerant transgenic oilseed rape genotypes on honey bees and other pollinating insects under field conditions. Entomol Exp Appl 108:159–168CrossRefGoogle Scholar
  105. Planet Ark. Canadian Growers Warn UK Farmers of GMO Crop Risks. 4 Nov 2003. 15 Mar 2009.
  106. Porlingis J (1997) Techniques to increase the attractiveness of kiwi flowers to honey bees. In: Tsirakoglou V, Thrasyvoulou A, Hatjina F, Sfakiotakis E (ed) Proceedings of the third international symposium on Kiwifruit, Thessaloniki, Greece, 19–22 Sept 1995. Acta Hort 444:439–443Google Scholar
  107. Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acrythosiphon pisum. Entomol Exp Appl 76:143–155CrossRefGoogle Scholar
  108. Rajotte EG, Fell RD (1982) A commercial bee attractant ineffective in enhancing apple pollination. Hortscience 17(2):230–231Google Scholar
  109. Ramirez-Romero R, Josette C, Pham-Delègue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611CrossRefGoogle Scholar
  110. Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008) Does Cry1Ab protein affect learning performance of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Safe 70:327–333CrossRefGoogle Scholar
  111. Ramsay G, Thompson CE, Neilson S, Mackay GR (1999) Honey bees as vectors of GM oilseed rape pollen. In: Lutman PJW (ed) Gene flow and agriculture: relevance for transgenic crops. BCPC symposium proceedings no. 72, BCPC, London, pp 209–214Google Scholar
  112. Rieth JP (1986) The repellent effect of pyrethroid insecticides on honey bees. PhD dissertation, University of Arizona, USA. X  +  100 ppGoogle Scholar
  113. Rieth JP, Levin MD (1987) The pyrethroid insecticide hazard to honey bees. Am Bee J 127(11):789–790Google Scholar
  114. Rieth JP, Levin MD (1988) The repellent effect of two pyrethroid insecticides on the honey bee. Physiol Entomol 13(2):213–218CrossRefGoogle Scholar
  115. Rosell RC, Torres JI, Brown JK (1999) Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva, haemolymph, and honeydew. Phytopathology 89(3):239–246PubMedCrossRefGoogle Scholar
  116. Rosellini D, Pezzotti M, Veronesi F (2001) Characterization of transgenic male sterility in alfalfa. Euphytica 118(3):313–319CrossRefGoogle Scholar
  117. Roy DB, Bohan DA, Haughton AJ, Hill MO, Jl O, Clark SJ, Perry JN, Rothery P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc London Ser B Biol Sci 358(1439):1879–1898CrossRefGoogle Scholar
  118. Salvucci ME, Rosell RC, Brown JK (1998) Uptake and metabolism of leaf proteins by the silverleaf whitefly. Arch Insect Biochem Physiol 39:155–165CrossRefGoogle Scholar
  119. Sandström JP, Moran NA (2001) Amino acid budgets in three aphid species using the same host plant. Physiol Entomol 26:202–211CrossRefGoogle Scholar
  120. Santamaria M, Thomson CJ, Read ND, Loake GJ (2001) The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Mol Biol 47(5):641–652PubMedCrossRefGoogle Scholar
  121. Sanvido O, Stark M, Romeis J, Bigler F (2006) Ecological impacts of genetically modified crops. Experiences from ten years of experimental field research and commercial cultivation. Art-schriftenreihe nr. 01, agroscope reckenholz-tänikon research station art, switzerlandGoogle Scholar
  122. Schobert C, Gottschalk M, Kovar DR, Staiger CJ, Yoo BC, Lucas WJ (2000) Characterization of Ricinus communis phloem profilin, RcPRO1. Plant Mol Biol 42(5):719–730PubMedCrossRefGoogle Scholar
  123. Scott SE, Wilkinson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17(4):390–393PubMedCrossRefGoogle Scholar
  124. Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-cholorbenzoic acid. J Agric Food Chem 46(1):5–7PubMedCrossRefGoogle Scholar
  125. Sick M, Kuhne S, Hommel B (2004) Transgenic rape pollen in larval food of bees – component of a model study on the probability of horizontal plant-to-bacteria gene transfer. [original title: transgener rapspollen in der bienennahrung – teil einer modelluntersuchung zur wahrscheinlichkeit des horizontalen gentransfers von pflanzen auf bakterien]. Mitteilungen Deutschen Gesellschaft Allgemeine Angew Entomol 14:423–426Google Scholar
  126. Singh PB, Sinha SN (1997) Effect of Bee-Q on honeybee visit and seed yield of hybrid sunflower. Seed Res 24(2):151–153Google Scholar
  127. Singh S, Saini K, Jain KL (1999) Quantitative comparison of lipids in some pollens and their phagostimulatory effects in honey bees. J Apic Res 38(1–2):87–92Google Scholar
  128. Stanley RG, Linskens HF (1974) Pollen, biology biochemistry management. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  129. Stanley-Horn DE, Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R, Jesse LCH, Losey JE, Obrycki JJ, Lewis L (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Nat Acad Sci USA 98(21):11931–11936PubMedCrossRefGoogle Scholar
  130. Stewart CN Jr, Prakash CS (1998) Chloroplast-transgenic plants are not a gene flow panacea. Nat Biotechnol 16(5):401PubMedCrossRefGoogle Scholar
  131. Tew JE (1992) Honey and wax – a consideration of production, processing and packaging techniques. In: Graham JM (ed) The hive and the honey bee, vol 15. Dadant and Sons, Hamilton, pp 657–704Google Scholar
  132. Tilman D, Fargione J, Wolff B et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284Google Scholar
  133. Tuha M, Simuth J (1991) Some properties of water-soluble proteins of propolis. Farm Obz 60(12):539–542Google Scholar
  134. U.S. Census Bureau’s (2008) Statistical Abstract – Looking at America’s. The Flowing Data Book. Data Google Scholar
  135. Van Praagh JP, von der Ohe W (1982) The possibility of masking the repellent effect of plant protection compounds not dangerous to bees. Gartenbauwissenschaft 47(3):114–115Google Scholar
  136. Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI (2005) Will transgenic plants adversely affect the environment? J Biosci 30:515–548PubMedCrossRefGoogle Scholar
  137. Wehrmann A, van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14(10):1274–1278PubMedCrossRefGoogle Scholar
  138. Williams IH (2001) Bee-mediated pollen and gene flow from GM plants. In: Benedek P, Richards KW (eds) Proceedings 8th pollination symposium. Acta Hort 561:25–33Google Scholar
  139. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  140. Zhang XG, Liu RL, Kang LY, Zhu YG, Tian P (1998) Construction of expression vectors of male sterility and its fertility restoration in rice (Oryza sativa L.). Acta Agron Sin 24(5):629–634Google Scholar
  141. Zhu YY, Gong J, Wu XG, Yang HJ, Shen GZ, Wang XQ, Yin LQ, Lu GH, Wang JA, Wan XS (2001) Preliminary study on flower characteristics and segregation of male sterility of transgenic plants with TA29-Barnase in cabbage (Brassica oleracea var. capitata). Acta Agr Shanghai 17(1):79–82Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Entomology Faculty of AgricultureSher-e-Kashmir University of Agricultural Sciences and TechnologyJammuIndia

Personalised recommendations