Decline in Pollinators

  • Dharam P. Abrol


Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Birds, bees, bats and other species that pollinate plants life are declining at alarming rate which has threatened the existence of plant life and this downward trend could damage dozens of commercially important crops. A decline in pollinator populations is one form of global change that actually has credible potential to alter the shape and structure of terrestrial ecosystems. The decline in pollinator population and diversity presents a serious threat to agricultural production and conservation and maintenance of biodiversity in many parts of the world. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare. This paper discusses the world scenario on the causes of pollinator decline, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them and future strategies to overcome the impending crisis.


Pollination Service Deform Wing Virus European Honeybee Colony Loss Pollinator Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrol DP (2009) Bees and beekeeping in India, 2nd edn. Kalyani Publishers, Ludhiana, 720 ppGoogle Scholar
  2. Aguilar R et al (2006) Plant reproductive susceptibility to habitat fragmentation: review and ­synthesis through a meta-analysis. Ecol Lett 9:968–980PubMedCrossRefGoogle Scholar
  3. Aizen M, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918PubMedCrossRefGoogle Scholar
  4. Aizen M, Garibaldi L, Cunningham S, Klein A (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18:1572–1575PubMedCrossRefGoogle Scholar
  5. Allen MF, Ball BV (1996) The incidence and world distribution of honey bee viruses. Bee World 77:141–162Google Scholar
  6. Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medelllin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12(1):8–17CrossRefGoogle Scholar
  7. Allsopp MH, de Lange WJ, Veldtman R (2008) Valuing insect pollination services with cost of replacement. PLoS One 3:e3128PubMedCrossRefGoogle Scholar
  8. Amos. ca. 760 B.C., Amos 7: 14. In: The holy bible containing the old and new testaments translated out of the original tongues and with former translations diligently compared and revised by his majesty’s special command [King James’ version]. Eyre and Spottiswoode, LondonGoogle Scholar
  9. Anderson D, East IJ (2008) The latest buzz about colony collapse disorder. Science 319:724–725PubMedCrossRefGoogle Scholar
  10. Aristotle. ca. 350 B.C. Historia animalium. Republished in 1910. In: The works of Aristotle ­translated into English (trans: D’Arcy Wentworth Thompson), vol IV. Oxford University Press, LondonGoogle Scholar
  11. Ashman TL et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421CrossRefGoogle Scholar
  12. Aston D (2010) Honey bee winter loss survey for England, 2007–8. J Apic Res 49(1):111–112CrossRefGoogle Scholar
  13. Bailey L (2002) The Isle of wight disease. Central Association of Bee-Keepers, Poole, 11 ppGoogle Scholar
  14. Bailey L, Ball BV (1991) Honey bee pathology. Academic, London, 193 ppGoogle Scholar
  15. Banda HJ, Paxton RJ (1991) Pollination of greenhouse tomatoes by bees. Acta Hort 288:194–198Google Scholar
  16. Barnett EA, Charlton AJ, Fletcher MR (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag Sci 63:1051–1057PubMedCrossRefGoogle Scholar
  17. Bascompte J et al (2003) The nested assembly of plant animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387PubMedCrossRefGoogle Scholar
  18. Bascompte J et al (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433PubMedCrossRefGoogle Scholar
  19. Batra SWT (1995) Bees and pollination in our changing environment. Apidologie 26:361–370CrossRefGoogle Scholar
  20. Becker P, Moure JS, Peralta FJA (1991) More about euglossine bees in Amazonian forest fragments. Biotropica 23(4b):586–591CrossRefGoogle Scholar
  21. Belaoussoff S, Kevan PG (1998) Toward an ecological approach for the assessment of ecosystem health. Ecosyst Heal 4:4–8CrossRefGoogle Scholar
  22. Belt T (1876) Bees and clover. Nature (London) 13:26CrossRefGoogle Scholar
  23. Berthoud H, Imdorf A, Haueter M, Radloff S, Neumann P (2010) Virus infections and winter losses of honey bee colonies (Apis mellifera). J Apic Res 49(1):60–65CrossRefGoogle Scholar
  24. Biesmeijer JC et al (2006) Parallel declines in pollinators and insect pollinated plants in Britain and the Netherlands. Science 313:351–354PubMedCrossRefGoogle Scholar
  25. Bishop M (1992) Strategies for beekeeping development in Nepal. In: Honeybees in Mountain Agriculture. (ed.) L.R.Verma, Oxford and IBH Publishing Co., New DelhiPubMedCrossRefGoogle Scholar
  26. Bohart GE (1957) Pollination of alfalfa and red clover. Ann Rev Entomol 2:355–380CrossRefGoogle Scholar
  27. Bohart GE (1972) Management of habitats for wild bees. Proc Tall Timbers Conf Ecol Anim Control Habitat Manag 3:253–266Google Scholar
  28. Bond WJ (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos. Trans. R. Soc. Lond. B, 344:83–90Google Scholar
  29. Bonmatin JM, Marchand PA, Charvet R, Colin ME (1994) Fate of systemic insecticides in fields (Imidacloprid and Fipronil) and risks for pollinators, in first European conference of apidology, Udine 19–23 Sept 2004Google Scholar
  30. Brittain CA et al (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11:106–115CrossRefGoogle Scholar
  31. Brodschneider R, Moosbeckhofer R, Crailsheim K (2010) Surveys as a tool to record winter losses of honey bee colonies: a two year case study in Austria and South Tyrol. J Apic Res 49(1):23–30CrossRefGoogle Scholar
  32. Brosi BJ et al (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783CrossRefGoogle Scholar
  33. Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416CrossRefGoogle Scholar
  34. Buchmann SE (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113Google Scholar
  35. Buchmann SE, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DCGoogle Scholar
  36. Burd M (1994) Bateman principle and reproduction – the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139CrossRefGoogle Scholar
  37. Cane JH, Tepedino VJ (2001) Causes and extent of declines among native North American ­invertebrate pollinators: detection, evidence, and consequences. Conserv Ecol 5(1): 1. [online] URL:
  38. Cane JH et al (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644PubMedCrossRefGoogle Scholar
  39. Cardoso da Silva JM, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74PubMedCrossRefGoogle Scholar
  40. Carré G et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47CrossRefGoogle Scholar
  41. Carreck NL, Ball BV, Martin SJ (2010a) The epidemiology of cloudy wing virus infections in honey bee colonies in the UK. J Apic Res 49(1):66–71CrossRefGoogle Scholar
  42. Carreck NL, Ball BV, Martin SJ (2010b) Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J Apic Res 49(1):93–94CrossRefGoogle Scholar
  43. Carvell C et al (2006) Declines in forage availability for bumblebees at a national scale. Biol Conserv 132:481–489CrossRefGoogle Scholar
  44. Charriere J-D, Neumann P (2010) Surveys to estimate colony losses in Switzerland. J Apic Res 49(1):132–133CrossRefGoogle Scholar
  45. Chauzat M-P, Carpentier P, Madec F, Bougeard S, Cougoule N, Drajnudel P, Clément M-C, Aubert M, Faucon J-P (2010a) The role of infectious agents and parasites in the health of honey bee colonies in France. J Apic Res 49(1):30–39Google Scholar
  46. Chauzat M-P, Martel A-C, Blanchard P, Clément M-C, Schurr F, Lair C, Ribière M, Wallner K, Rosenkranz P, Faucon J-P (2010b) A case report of a honey bee colony poisoning incident in France. J Apic Res 49(1):113–115CrossRefGoogle Scholar
  47. Chauzat M-P, Martel A-C, Zeggane S, Drajnudel P, Schurr F, Clément M-C, Ribière-Chabert M, Aubert M, Faucon J-P (2010c) A case control study and a survey on mortalities of honey bee colonies (Apis mellifera) in France during the winter of 2005–6. J Apic Res 49(1):40–51CrossRefGoogle Scholar
  48. Choi SY (1984) Brief report on the status of Korean beekeeping. In: Proceedings of the Expert Consultion Beekeep. Apis mellifera. Tropical Sub-tropical Asia. FAO, Rome, pp 170–190Google Scholar
  49. Condit IJ (1920) Caprifigs and caprification. Calif Agric Exp Stat Bull 319:341–375Google Scholar
  50. Condit IJ, Swingle WT (1947) The fig. Chronica Botanica, WalthamGoogle Scholar
  51. Conner AJ, Glare TR, Nap J (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46PubMedCrossRefGoogle Scholar
  52. Corbet SA (1995) Insects, plants and succession: advantages of long-term set-aside. Agric Ecosyst Environ 53:201–217CrossRefGoogle Scholar
  53. Corbet SA (2000) Conserving compartments in pollination webs. Conserv Biol 14(5):1229–1231CrossRefGoogle Scholar
  54. Costanza R, D’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Rifkin RG, Sutton O, van den Belt M (1997) The value of the world’s ecosystem and natural capital. Nature (London) 387:253–260CrossRefGoogle Scholar
  55. Costin BJ, Morgan JW, Young AG (2001) Reproductive success does not decline in fragmented populations of Leucochrysum albicans subsp. albicans var. tricolor (Asteraceae). Biol Conserv 98(3):273–284CrossRefGoogle Scholar
  56. Cox C (2001) Imidacloprid, insecticide factsheet. J Pestic Reform, vol 21(1).
  57. Cox PA, Elmquist T, Pierson E, Rainey WE (1991) Flying foxes as strong interactors in South Pacific island ecosystems: a conservation hypothesis. Conserv Biol 5:448–454CrossRefGoogle Scholar
  58. Cox-Foster DL et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  59. Crailsheim K, Brodschneider R, Neumann P (2009) The COLOSS puzzle: filling in the gaps. In: Proceedings of the 4th COLOSS conference, 3–4 Mar 2009. Zagreb, pp 46–47Google Scholar
  60. Crane E (1992) Beekeeping in mountain life-support systems. In: Verma LR (ed) Honeybees in mountain agriculture. Proceedings of international expert meeting on beekeeping development in the Hindu Kush-Himalayan Region, Kathmandu, Nepal, 21–23 June 1989. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 17–27Google Scholar
  61. Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond Series B 267:1149–1152CrossRefGoogle Scholar
  62. Currie RW, Pernal SF, Guzman-Novoa E (2010) Honey bee colony losses in Canada. J Apic Res 49(1):104–106. doi:DOI: 10.3896/IBRA. Scholar
  63. Dahle B (2010) The role of Varroa destructor for honey bee colony losses in Norway. J Apic Res 49(1):124–125CrossRefGoogle Scholar
  64. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106PubMedCrossRefGoogle Scholar
  65. Dias BSF, Raw A, Imperatri-Fonseca VL (1999) International pollinators initiative: the Sao Paulo declaration on pollinators. Report on the recommendations of the workshop on the conservation and sustainable use of pollinators in agriculture with emphasis on bees. Brazilian Ministry of the Environment, Brazil, 79 ppGoogle Scholar
  66. Didham RK et al (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496PubMedCrossRefGoogle Scholar
  67. Dively GP (2007) Summary of research on the non-target effect of BT corn pollen on honeybees.
  68. Dormann CF et al (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett 11:235–244PubMedCrossRefGoogle Scholar
  69. Dunning JW (1886) The importation of humble bees into New Zealand. Trans R Entomol Soc Lond 6:32–34Google Scholar
  70. Dutech C, Seiter J, Petronelli P, Joly HI, Jarne P (2002) Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana. Mol Ecol 11:725–738PubMedCrossRefGoogle Scholar
  71. Eisen G (1891) The first introduction of Blastophaga psenes into California. Insect Life 4:128–129Google Scholar
  72. Ellis JD, Munn PA (2005) The worldwide health status of honey bees. Bee World 86(88):101Google Scholar
  73. Ellis JD, Evans JD, Pettis JS (2010) Colony losses, managed colony population decline and colony collapse disorder in the United States. J Apic Res 49(1):134–136CrossRefGoogle Scholar
  74. England PR, Beynon F, Ayre DJ, Whelan RJ (2001) Molecular genetic assessment of mating-system variation in a naturally bird-pollinated shrub: contributions from birds and introduced honeybees. Conserv Biol 15(6):1645–1655CrossRefGoogle Scholar
  75. Eyer M et al (2009) Small hive beetle, Aethina tumida, as a potential biological vector of honeybee viruses. Apidologie 40:419–428CrossRefGoogle Scholar
  76. FAO (1993) Harvesting nature’s diversity. FAO, RomeGoogle Scholar
  77. Fontaine C et al (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1. doi: 10.1371/journal.pbio.0040001 PubMedCrossRefGoogle Scholar
  78. Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic ­networks. Ecol Lett 9:278–283CrossRefGoogle Scholar
  79. Franck P et al (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52:1119–1134CrossRefGoogle Scholar
  80. Fraser JG (1935) The golden bough, 3rd edn. Macmillan, New YorkGoogle Scholar
  81. Frazier M, vanEngelsdor D, Caro D (2007) Collapse Disorder Affecting Honey Bee (Apis mellifera) colonies Edited by the CCD working group at Penn State UniversityPubMedCrossRefGoogle Scholar
  82. Free JB (1984) Beekeeping and pollination in developing countries. In: Second international conference on apiculture in tropical countries. Indian Agricultural Research Institute, New Delhi, pp 475–488Google Scholar
  83. Free JB (1993) Insect pollination of crops, 2nd edn. Academic, LondonGoogle Scholar
  84. Fries I (2009) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103 Suppl 1:S 73–79PubMedGoogle Scholar
  85. Gabriel D, Tscharntke T (2007) Insect pollinated plants benefit from organic farming. Agric Ecosyst Environ 118:43–48CrossRefGoogle Scholar
  86. Gajger IT, Tomljanović Z, Petrinec Z (2010) Monitoring health status of Croatian honey bee ­colonies and possible reasons for winter losses. J Apic Res 49(1):107–108CrossRefGoogle Scholar
  87. Galil J (1967) Sycomore wasps from ancient Egyptian tombs. Israel J Entomol 2:1–9Google Scholar
  88. Galil J (1968) An ancient technique for ripening sycomore fruit in east-mediterranean countries. Econ Bot 22:178–190CrossRefGoogle Scholar
  89. Galil J, Eisikowitch D (1968) On the pollination ecology of Ficus sycomorus in East Africa. Ecology 49:259–269CrossRefGoogle Scholar
  90. Galil J, Eisikowitch D (1969a) Further studies on the pollination ecology of Ficus sycomorus L. (Hymenoptera, Chalcidoidea, Agaonidae). Tijdschrift voor Entomol 112:1–13Google Scholar
  91. Galil J, Eisikowitch D (1969b) Note on pollen transport, pollination and protection of ovaries in Ficus sycomorus. New Phytol 68:1243–1244CrossRefGoogle Scholar
  92. Galil J, Eisikowitch D (1974) Further studies on the pollination ecology of Ficus sycomorus. II. Pocket filling and emptying by Ceratosolen arabicus Mayr. New Phytol 73:515–528CrossRefGoogle Scholar
  93. Gallai N et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  94. Garibaldi LA et al (2009) Pollinator shortage and global crop yield – looking at the whole ­spectrum of pollinator dependency. Commun Integr Biol 2:37–39PubMedCrossRefGoogle Scholar
  95. Genersch E et al (2006) Detection of deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J Invertebr Pathol 91:61–63PubMedCrossRefGoogle Scholar
  96. Ghazoul J (2005a) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373PubMedCrossRefGoogle Scholar
  97. Ghazoul J (2005b) Response to Steffan-Dewenter et al.: questioning the global pollination crisis. Trends Ecol Evol 20:652–653CrossRefGoogle Scholar
  98. Ghazoul J, Liston KA, Bowles TJB (1998) Disturbance-induced density dependent seed set in Shorea siamensis (Diperocarpaceae), a tropical forest tree. J Ecol 86:462–473CrossRefGoogle Scholar
  99. Gilpin M, Soulé M (1986) Minimum viable populations: processes of species extinction (Chapter 2, pp. 19–34). In: Conservation biology: the science of scarcity and diversity. Sinauer Associates, Inc, Sunderland, 585 ppGoogle Scholar
  100. Goor A (1965) The history of the fig in the Holy Land from ancient times to the present. Econ Bot 19:124–135CrossRefGoogle Scholar
  101. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Syst 34:1–26CrossRefGoogle Scholar
  102. Goulson D, Sparrow K (2009) Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J Insect Conserv 13:177–181CrossRefGoogle Scholar
  103. Goulson D et al (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208PubMedCrossRefGoogle Scholar
  104. Gray A, Peterson M, Teale A (2010) An update on recent colony losses in Scotland from a sample survey covering during 2006–2008. J Apic Res 49(1):129–131CrossRefGoogle Scholar
  105. Groom MJ (2001) Consequences of subpopulation isolation for pollination, herbivory, and population growth in Clarkia concinna concinna (Onagraceae). Biol Conserv 100:55–61CrossRefGoogle Scholar
  106. Gutierrez D (2009) Honey bee collapse strikes Japan, up to fifty percent of honey bees gone. Natural News, 28 Apr 2009.
  107. Haddad N, Bataeneh A, Albaba I, Obeid D, Abdulrahman S (2009) Status of colony losses in the Middle East. In: Proceedings of the 41st Apimondia congress, Montpellier, p 36Google Scholar
  108. Harz M, Müller F, Rademacher E (2010) Organic acids: acute toxicity on Apis mellifera and ­recovery in the haemolymph. J Apic Res 49(1):95–96CrossRefGoogle Scholar
  109. Hatjina F, Bouga M, Karatasou A, Kontothanasi A, Charistos L, Emmanouil C, Emmanouil N, Maistros A-D (2010) Data on honey bee losses in Greece: a preliminary note. J Apic Res 49(1):116–118. doi: DOI:10.3896/IBRA. CrossRefGoogle Scholar
  110. Hegland SJ, Totland Ø (2008) Is the magnitude of pollen limitation in a plant community affected by pollinator visitation and plant species specialisation levels? Oikos 117:883–891CrossRefGoogle Scholar
  111. Hegland SJ et al (2009) How does climate warming affect plant– pollinator interactions? Ecol Lett 12:184–195PubMedCrossRefGoogle Scholar
  112. Hendrickx F et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  113. Henslow G (1892) Egyptian figs. Nature (London) 47:102CrossRefGoogle Scholar
  114. Henslow G (1902) The sycomore fig. J R Hort Soc Lond 27:128–131Google Scholar
  115. Herodotus 485–425 B.C. Historiae. Republished. In: Wordsworth classics of world literature (trans: Rawlinson G). WareGoogle Scholar
  116. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol 12:450–455PubMedCrossRefGoogle Scholar
  117. Hobbs GA (1967) Domestication of alfalfa leaf-cutter bees. Canada Department of Agriculture Publication Number 1313, Ottawa, OntarioGoogle Scholar
  118. Hoehn P et al (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc Lond B Biol Sci 275:2283–2291CrossRefGoogle Scholar
  119. Holzschuh A et al (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361CrossRefGoogle Scholar
  120. Hopkins I (1914) History of the bumblebee in New Zealand – its introduction and results. New Zealand Department of Agriculture, Industry and Commerce Bulletin Number 46 (new series), ChristchurchGoogle Scholar
  121. Ingram M, Nabhan G, Stephen Buchmann (1996) Global pesticide campaigner, vol 6, number 4, Dec 1996Google Scholar
  122. Ismail A, Ibrahim AG (1986) The potential for ceratopogonid midges as insect pollinators of cocoa in Malaysia. In: Hussein MY, Ibrahim AG (eds) Biological control in the tropics. Universiti Pertanian Malaysia, Serdang, pp 471–484Google Scholar
  123. Ivanova EN, Petrov PP (2010) Regional differences in honey bee winter losses in Bulgaria during the period 2006–9. J Apic Res 49(1):102–103CrossRefGoogle Scholar
  124. Jaffée R (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv Biol 24:583–593CrossRefGoogle Scholar
  125. Janzen DH (1974) The de-flowering of Central America. Nat Hist 83:48–53Google Scholar
  126. Johansen CA (1977) Pesticides and pollinators. Ann Rev Entomol 22:177–192CrossRefGoogle Scholar
  127. Johansen CA, Mayer DF (1990) Pollinator protection: a bee and pesticide handbook. Wicwas Press, CheshireGoogle Scholar
  128. Jones J, Helliwell P, Beekman M, Maleszka RJ, Oldroyd BP (2005) The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J Comp Physiol A 191:1121–1129CrossRefGoogle Scholar
  129. Kafle GP (1992) Salient features of beekeeping in Nepal. In: Verma LR (ed) Honeybees in the mountain agriculture. Oxford and IBH Pub. Co. Pvt. Ltd, New Delhi, pp 155–162Google Scholar
  130. Karise R (2007) Foraging behaviour and physiology of bees: impact of insecticides. Ph.D. thesis, Estonian University of Life Sciences, Tartu, pp 1–123Google Scholar
  131. Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. BioScience 47:297–307CrossRefGoogle Scholar
  132. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  133. Keimer L (1928) An ancient Egyptian knife in modern Egypt. Anc Egypt 1928:65–66Google Scholar
  134. Kenmore P, Krell R (1998) Global perspectives on pollination in agriculture and agroecosystem management. International workshop on the conservation and sustainable use of pollinators in agriculture, with emphasis on bees. Oct 7–9, Sao PauloGoogle Scholar
  135. Kerr EA, Kribs W (1955) Electric vibrator as an aid in greenhouse tomato production. Queensland J Agric Science 2:157–169Google Scholar
  136. Kevan PG (1974) Pollination, pesticides, and environmental quality. BioScience 24:198–199CrossRefGoogle Scholar
  137. Kevan PG (1975a) Pollination and environmental conservation. Environ Conserv 2:293–298CrossRefGoogle Scholar
  138. Kevan PG (1975b) Forest application of the insecticide Fenitrothion and its effects on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in southern New Brunswick, Canada. Biol Conserv 7:301–309CrossRefGoogle Scholar
  139. Kevan PG (1977) Blueberry crops in Nova Scotia and New Brunswick – pesticides and crop reductions. Can J Agric Econ 25:61–64CrossRefGoogle Scholar
  140. Kevan PG (1997) Honeybees for better apples and much higher yields: study shows pollination services pay dividends. Can Fruitgrow 14:16Google Scholar
  141. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393CrossRefGoogle Scholar
  142. Kevan PG, LaBerge WE (1979) Demise and recovery of native pollinator populations through pesticide use and some economic implications. In: Proceedings of the fourth international symposium on pollination, Maryland agricultural experiment station special miscellaneous publication number 1, College Park, pp 489–508Google Scholar
  143. Kevan PG, Oppermann EB (1980) Blueberry production in New Brunswick, Nova Scotia and Maine: reply to Wood et al. Can J Agric Econ 28:81–84CrossRefGoogle Scholar
  144. Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5(1)Google Scholar
  145. Kevan PG, Plowright RC (1995) Impact of pesticides on forest pollination. In: Armstrong JA, Ives WGH (eds) Forest insect pests in Canada. Natural Resources Canada/Canadian Forest Service, Science and Sustainable Development Directorate, Ottawa, pp 607–618Google Scholar
  146. Kevan PG, Hussein NY, Hussey N, Wahid MB (1986) Modelling the use of Elaeidobius kamerunicus for pollination of oil palm. Planter (Malaysia) 62:89–99Google Scholar
  147. Kevan PG, Straver WA, Offer M, Laverty TM (1991) Pollination of greenhouse tomatoes by ­bumblebees in Ontario. Proc Entomol Soc Ontario 122:15–19Google Scholar
  148. Kevan PG, Greco CF, Belaoussoff S (1997) Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. J Appl Ecol 34:1122–1136CrossRefGoogle Scholar
  149. Kleijn D, Raemakers I (2008) A retrospective analysis of pollen host plant use by stable and declining bumblebee species. Ecology 89:1811–1823PubMedCrossRefGoogle Scholar
  150. Klein A-M, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16(4):1003–1014CrossRefGoogle Scholar
  151. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313PubMedCrossRefGoogle Scholar
  152. Knuth P (1909) Handbook of flower pollination: based upon Hermann Müller’s work ‘The ferti­lization of flowers by insects’, vol III, Observations on flower pollination made in Europe and the arctic regions on species belonging to the natural orders Goodenovieae to Cycadeae. Oxford University Press, LondonGoogle Scholar
  153. Koeniger N (1982) Interactions among the four species of the genus’ Apis. In: Breed MD, Michcner CD, Evans E (eds) The biology of social insects. Westview Press, Boulder, pp 59–64Google Scholar
  154. Kraus B, Page RE (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis ­mellifera (Hymenoptera: Apidae) in California. Environ Entomol 24:1473–1480Google Scholar
  155. Kremen C, Ricketts T (2000) Global perspectives on pollination disruptions. Conserv Biol 14(5):1226–1228CrossRefGoogle Scholar
  156. Kremen C et al (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816PubMedCrossRefGoogle Scholar
  157. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314PubMedCrossRefGoogle Scholar
  158. Kunin WE (1997) Population biology and rarity: on the complex density dependence in ninsect-plant interactions. In: Kunin WE, Gaston KJ (eds) The biology of rarity. Chapman and Hall, London, pp 150–173CrossRefGoogle Scholar
  159. Lambdon PW et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149Google Scholar
  160. Larsen TH et al (2005) Extinction order and altered community structure rapidly disrupt eco­system functioning. Ecol Lett 8:538–547PubMedCrossRefGoogle Scholar
  161. Lavergne S et al (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478CrossRefGoogle Scholar
  162. Law BS (2001) The diet of the common blossom bat (Syconycteris australis) in upland tropical rainforest and the importance of riparian areas. Wildl Res 28:619–626CrossRefGoogle Scholar
  163. Law BS, Lean M (1999) Common blossom bats (Syconycteris australis) as pollinators in ­fragmented Australian tropical rainforests. Biol Conserv 91:201–212CrossRefGoogle Scholar
  164. Le Conte Y, Navajas M (2008) Climate change: impact on honey bee populations and diseases. Rev Sci Tech Off Int Epizoot 27:499–510Google Scholar
  165. Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic, San Diego, 1133 ppGoogle Scholar
  166. Loper GM (1995) A documented loss of feral bees due to mite infestations in Southern Arizona. Am Bee J 135:823–824Google Scholar
  167. Losey JE, Vaughan M (2006) The economic value of ecological services provided by Insects. BioScience 56:311–323CrossRefGoogle Scholar
  168. MacKenzie KE, Winston ML (1984) Diversity and abundance of native bee pollinators of berry crops and natural vegetation in the Lower Fraser Valley, British Columbia. Can Entomol 116:965–974CrossRefGoogle Scholar
  169. Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I (2007) Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honey bees in Israel: evidence for diversity due to intra- and inter -species recombination. J Gen Virol 88:3428–3438PubMedCrossRefGoogle Scholar
  170. Margoliouth DS (1905) Mohammed and the rise of Islam, 3rd edn. Putnam, New YorkGoogle Scholar
  171. Martin SJ, Medina LM (2004) Africanized honey bees have unique tolerance to Varroa mites. Trends Parasitol 20:112–114PubMedCrossRefGoogle Scholar
  172. Martin SJ, Ball BV, Carreck NL (2010) Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricidetreated Varroa destructor infested honey bee (Apis mellifera) colonies. J Apic Res 49(1):72–79CrossRefGoogle Scholar
  173. Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH, (eds) (1996) The conservation of bees. Linnean society symposium series number 18. Academic, LondonGoogle Scholar
  174. Matsumura C et al (2004) Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in Southern Hokkaido. Japan Glob Environ Res 8:51–66Google Scholar
  175. Maués MM (2002) Reproductive phenology and pollination of the Brazil nut tree (Bertholletia excelsa Humb. & Bonpl. Lecythidaceae) in eastern Amazonia. In: Kevan PG, Imperatriz-Fonseca VL (eds). Pollinating bees: the conservation link between agriculture and nature. Brasília, Ministry of Environment, Secretariat for Biodiversity and Forests, pp 245–254Google Scholar
  176. Mbaya JKS, Kevan PG (1995) Applied pollination in Africa. In: Roubik DW (ed). Pollination of cultivated plants in the tropics. FAO, Food and Agriculture Service Bulletin Number 118, Rome, pp 57–62Google Scholar
  177. McGregor SE (1976) Insect pollination of cultivated crop plants. U.S. Department of Agriculture Handbook Number 496, Washington, DCGoogle Scholar
  178. Medrzycki P, Sgolastra F, Bortolotti L, Bogo G, Tosi S, Padovani E, Porrini C, Sabatini AG (2010) Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. J Apic Res 49(1):52–59CrossRefGoogle Scholar
  179. Meeuse BJD (1981) The story of pollination. Ronald Press, New YorkGoogle Scholar
  180. Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova E, Büchler R (2010) Conserving diversity and vitality for honey bee breeding. J Apic Res 49(1):85–92CrossRefGoogle Scholar
  181. Memmott J et al (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond B Biol Sci 271:2605–2611CrossRefGoogle Scholar
  182. Memmott J et al (2007) Global warming and the disruption of plant – pollinator interactions. Ecol Lett 10:710–717PubMedCrossRefGoogle Scholar
  183. Mishra RC (ed) (1997) Perspective in Indian apiculture. Agro Botanica, IndiaGoogle Scholar
  184. Morandin LA (2000) Bumble bee (Bombus impatiens) pollination of greenhouse tomatoes. Thesis, University of Western Ontario, LondonGoogle Scholar
  185. Morandin LA et al (2005) Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manag Sci 61:619–626PubMedCrossRefGoogle Scholar
  186. Moritz RFA et al (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J Insect Conserv 11:391–397CrossRefGoogle Scholar
  187. Morse RA (ed) (1978) Honey bee pests, predators and diseases. Cornell University Press, Ithaca, 430 ppGoogle Scholar
  188. Morse RA, Calderone NW (2000) The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult 128:2–15Google Scholar
  189. Mutinelli F, Costa C, Lodesani M, Baggio A, Medrzycki P, Formato G, Porrini C (2010) Honey bee colony losses in Italy. J Apic Res 49(1):119–120CrossRefGoogle Scholar
  190. Nabhan GP, Buchmann SL (1997a) Pollination services: Biodiversity’s direct link to world food stability. In: Daly G (ed) Ecosystem services. Island Press, Washington, DC, pp 133–150Google Scholar
  191. Nabhan GP, Buchmann SE (1997b) Services provided by pollinators. In: Daily GC (ed) Nature’s ­services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 133–150Google Scholar
  192. National Research Council (US) (2007) Committee on the Status of Pollinators in North America. National Academies Press, 2007 - Science - 307 pagesGoogle Scholar
  193. Natural Research Council (2006) Status of pollinators in North America. National Academic Press, Washington, DCGoogle Scholar
  194. Neumann P, Carreck C (2010) Honey bee colony losses: a global perspective. J Apic Res 49:1–6CrossRefGoogle Scholar
  195. Neumann P, Elzen PJ (2004) The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): gaps in our knowledge of an invasive species. Apidologie 35:229–247CrossRefGoogle Scholar
  196. Neupane KR (2001) Foraging preference of honeybee species to selected horticultural crops. M. Sc. Thesis submitted to IAAS, Rampur, Chitwan, NepalGoogle Scholar
  197. Nguyen BK, Van Der Zee R, Vejsnæs F, Le Conte Y, Ritter W (2010) COLOSS working group 1: monitoring and diagnosis. J Apic Res 49(1):97–99CrossRefGoogle Scholar
  198. Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol 5(6):e168. doi: 10.1371/journal.pbio.0050168 PubMedCrossRefGoogle Scholar
  199. Olmstead A, Woolen DB (1987) Bee pollination and productivity growth: the case of alfalfa. Am J Agric Econ 69:56–63CrossRefGoogle Scholar
  200. Ongus JR et al (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol 85:3747–3755PubMedCrossRefGoogle Scholar
  201. Oostermeijer JGB, Luijten SH, Krenova ZV, Debn Mijls HCM (1998) Relationship between population and habitat characteristics and reproduction of the rare Gentiana pneumonanthe L. Conservation Biology 12(5):1042–1053PubMedCrossRefGoogle Scholar
  202. Parmesan C et al (1999) Pole ward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  203. Partap U (2003) Improving agricultural productivity and livelihoods through pollination: some issues and challenges. In: Waliyar F, Collette L, Kenmore PE. Beyond the gene Horizon: sustaining agricultural productivity and enhancing livelihoods through optimization of crop and crop-associated biodiversity with emphasis on semi-arid tropical agroecosystems. Proceedings of a workshop, 23–25 Sept 2002. ICRISAT/FAO, PatancheruGoogle Scholar
  204. Partap U, Shukla AN, Verma LR (2000) Pollination of peach and plum by Apis cerana. In: Matsuka M, Verma LR, Wongsiri S, Shrestha KK, Partap U (eds). Asian bees and beekeeping in Asia: progress of research and development. Proceedings of the fourth AAA international conference. Oxford and IBH Publishing Co. Pvt. Ltd, Kathmandu, pp 171–173, 23–28 Mar 1998Google Scholar
  205. Paxton RJ (2010) Does infection by Nosema ceranae cause “colony collapse disorder” in honey bees (Apis mellifera)? J Apic Res 49(1):80–84. doi:DOI: 10.3896/IBRA. Scholar
  206. Peck O, Bolton JL (1946) Alfalfa seed production in northern Saskatchewan as affected by bees, with a report on the means of increasing the populations of native bees. Sci Agric 26:338–418Google Scholar
  207. Pimentel D, Stachow U, Takacs DA, Brubaker HW, Dumas AR, Meaney JJ, O’Neil J, Onsi DE, Corzilius DB (1992) Conserving biological diversity in agricultural/forestry systems. BioScience 42:354–362PubMedCrossRefGoogle Scholar
  208. Pokhrel S (2006) Status and management of domesticated and wild honeybees (Apis spp.) in Chitwan, Nepal. Ph.D. dissertation, TU. Institute of Agriculture and Animal Sciences, Rampur, 243 ppGoogle Scholar
  209. Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones HR, Neumann P, Settele J (2010a) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49(1):15–22CrossRefGoogle Scholar
  210. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010b) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353PubMedCrossRefGoogle Scholar
  211. Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conserv Biol 4:365–374CrossRefGoogle Scholar
  212. Rana BS, Garg ID, Paul Khurana SM, Verma LR, Agrawal HO (1987) Thai sacbrood virus of honeybees (Apis cerana indica F) in the North West Himalayas. Indian J Virol 2:127–131Google Scholar
  213. Rasmont P, Mersch P (1988) Première estimation de la derive faunique chez les bourdons de la Belgique (Hymenoptera, Apidae). Ann Soc R Zool Belg 118:141–147Google Scholar
  214. Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant–pollinator interaction. Curr Sci 65:273–277Google Scholar
  215. Reasoner PW (1891) The condition of tropical and semi-tropical fruits. U.S. Department of Agriculture, Division of Pomology, Bulletin number 1, Washington, DCGoogle Scholar
  216. Rennie J, White PB, Harvey EJ (1921) Isle of wight disease in hive bees. Trans R Soc Edinburgh 52:737–779CrossRefGoogle Scholar
  217. Ribière M et al (2008) Natural history and geographical distribution of honey bee viruses. In: Aubert MFA (ed) Virology and the honey bee. European Commission, Bruxelles, pp 15–84Google Scholar
  218. Richards AJ (2001) Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Ann Bot (Lond) 88:165–172CrossRefGoogle Scholar
  219. Ricketts TH et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515PubMedCrossRefGoogle Scholar
  220. Ritter W (1981) Varroa disease of the honeybee Apis mellifera. Bee World 62:141–153Google Scholar
  221. Roberts SPM, Potts SG (2010) The status of European non-Apis bees. J Apic Res 49(1):137–138CrossRefGoogle Scholar
  222. Robertson AW, Kelly D, Ladley JJ, Sparrow AD (1999) Effects of pollinator loss on endemic New Zealand mistletoes (Loranthaceae). Conserv Biol 13:499–508CrossRefGoogle Scholar
  223. Rortais A et al (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36:71–83CrossRefGoogle Scholar
  224. Roubik DW (ed) (1995) Pollination of cultivated plants in the tropics. FAO, Food and Agriculture Service Bulletin Number 118, RomeGoogle Scholar
  225. Roubik DW (2000) Pollination system stability in Tropical America. Conserv Biol 14(5):1235–1236CrossRefGoogle Scholar
  226. Roubik DW, Wolda H (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul Ecol 43:53–62CrossRefGoogle Scholar
  227. Sakai T (1992) Apis cerana beekeeping in Japan. In: Verma LR (ed) Honeybees in mountain agriculture. Oxford/IBH Publishing Co, New DelhiPubMedCrossRefGoogle Scholar
  228. Sammataro D et al (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548PubMedCrossRefGoogle Scholar
  229. Santrac V, Granato A, Mutinelli F (2010) Detection of Nosema ceranae in Apis mellifera from Bosnia and Herzegovina. J Apic Res 49(1):100–101CrossRefGoogle Scholar
  230. Saville, Naomi M (2000) Farmer-participatory extension in Jumla, Western Nepal. In: Matsuka M (ed) Asian bees and beekeeping: progress of research and development. Oxford/IBH, New Delhi, pp 230–236PubMedCrossRefGoogle Scholar
  231. Schwarz MP, Hogendoorn K (1999) Biodiversity and conservation of Australian native bees. In: Ponder W, Lunney D (eds) The other 99%: the conservation and biodiversity of invertebrates, Transactions of the Royal Zoological Society of New South Wales, Sydney, pp 388–393Google Scholar
  232. Schweiger O et al (2008) Climate change can cause spatial mismatch of trophic interacting ­species. Ecology 89:3472–3479PubMedCrossRefGoogle Scholar
  233. Scott-Dupree CD, Winston ML (1987) Wild bee diversity and abundance in orchard and uncultivated habitats in the Okanagan Valley, British Columbia. Can Entomol 119:735–745CrossRefGoogle Scholar
  234. Settele J et al (2008) Climatic risk atlas of European butterflies. BioRisk 1:1–710. doi: 10.3897/biorisk.1 CrossRefGoogle Scholar
  235. Shrestha JB, Shrestha KK (2000) Beekeeping in Nepal: Problems and Potentials. In: Matsuka, M., L. R. Verma, S. Wongsiri, K. K. Shrestha, and U. Partap (eds.) Asian bees and beekeeping, progress of research and development: Proceedings of Fourth Asian Apicultural Association International Conference Kathmandu, Nepal, March 23–28, 1998. New Delhi, Oxford and IBHPubMedCrossRefGoogle Scholar
  236. Siebert JW (1980) Beekeeping, pollination and externalities in California agriculture. Am J Agric Econ 62:165–171CrossRefGoogle Scholar
  237. Soroker V, Hetzroni A, Yacobson B, Voet H, Slabezki S, Efrat H, Chejanovsky N (2009) Colony losses in Israel: incidence of viral infection and beehive populations. In: Proceedings of the 41st Apimondia congress, Mointpellier, p 38Google Scholar
  238. Southwick EE, Southwick L Jr (1992) Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J Econ Entomol 85:621–633Google Scholar
  239. Spiewok S, Neumann P (2006) Infestation of commercial bumblebee (Bombus impatiens) field colonies by small hive beetles (Aethina tumida). Ecol Entomol 31:623–628CrossRefGoogle Scholar
  240. Steffan-Dewenter I et al (2006) Bee diversity and plant–pollinator interactions in fragmented landscapes. In: Waser NM, Ollerton J (eds) Specialization and generalization in plant–pollinator interactions. University of Chicago Press, Chicago, pp 387–410Google Scholar
  241. Steffan-Dewenter I, Tscharntke T (2000) Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122:288–296CrossRefGoogle Scholar
  242. Steffan-Dewenter I, Westphal C (2008) The interplay of pollinator diversity, pollination services and landscape change. J Appl Ecol 45:737–741CrossRefGoogle Scholar
  243. Steffan-Dewenter I et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  244. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652PubMedCrossRefGoogle Scholar
  245. Stephen WP (1955) Alfalfa pollination in Manitoba. J Econ Entomol 48:543–548Google Scholar
  246. Stone GN, Willmer PG (1989) Warm-up rates and body temperatures in bees – the importance of body size, thermal regime and phylogeny. J Exp Biol 147:303–328Google Scholar
  247. Stout J, Morales CL (2009) Ecological impacts of invasive alien species on bees. Apidologie 40:388–409CrossRefGoogle Scholar
  248. Stout JC, Kells AR, Goulson D (2002) Pollination of the invasive exotic shrub Lupinus arboreus (Fabaceae) by introduced bees in Tasmania. Biological Conservation 106:425–434PubMedCrossRefGoogle Scholar
  249. Sutton SL, Collins NM (1991) Insects and tropical forest conservation. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic, London, pp 405–422Google Scholar
  250. Syed RA (1979) Studies on oil palm pollination. Bull Entomol Res 69:213–224CrossRefGoogle Scholar
  251. Syed RA, Law IH, Corley RHV (1982) Insect pollination of oil palm: introduction, establishment and pollinating efficiency of Elaeidobius kamerunicus in Malaysia. Planter (Malaysia) 58:547–561Google Scholar
  252. Tautz J, Maier S, Groh C, Rossler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their larval development. Proc Nat Acad Sci USA 100:7343–7347PubMedCrossRefGoogle Scholar
  253. Thapa RB (2006) Honeybees and other insect pollinators of cultivated plants: a review. J Inst Agric Anim Sci 27:1–23Google Scholar
  254. Theophrastus. 372–287 B.C. Peri phyton historia. Republished in 1961. In: Inquiring into plants (trans: Hart A). Heinemann, LondonGoogle Scholar
  255. Thomas CD et al (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581PubMedCrossRefGoogle Scholar
  256. Thomas JA, Telfer MG et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303(5665):1879–1881PubMedCrossRefGoogle Scholar
  257. Thompson HM, Hunt LV (1999) Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8:147–166CrossRefGoogle Scholar
  258. Thomson DM (2006) Detecting the effects of introduced species: a case study of competition between Apis and Bombus. Oikos 114:407–418CrossRefGoogle Scholar
  259. Topolska G, Gajda A, Pohorecka K, Bober A, Kasprzak S, Skubida M, Semkiw P (2010) Winter colony losses in Poland. J Apic Res 49(1):126–128. doi: 10.3896/IBRA. CrossRefGoogle Scholar
  260. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive ­mutualisms. Trends Ecol Evol 21:208–216PubMedCrossRefGoogle Scholar
  261. Tscharntke T, Klein A-M, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  262. Tylianakis JM et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363PubMedCrossRefGoogle Scholar
  263. Tylor EB (1889) Fertilization of date palm in ancient Assyria. Academy (London) 35:396Google Scholar
  264. UNEP (1993) Global biodiversity. UNEP, NairobiGoogle Scholar
  265. Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman T-L (2006) Pollination decays in biodiversity hotspots. Proc Natl Acad Sci USA 103(4):956–961PubMedCrossRefGoogle Scholar
  266. Van Der Zee R (2010) Colony losses in the Netherlands. J Apic Res 49(1):121–123CrossRefGoogle Scholar
  267. vanEngelsdorp D et al (2008) A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 3:e4071. doi:DOI:10.1371/ journal.pone.0004071CrossRefGoogle Scholar
  268. Vanengelsdorp D, Meixner MD (2009) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol (in press). DOI  10.1016/j.jip.2009.06.011
  269. vanEngelsdorp D, Underwood R, Caron D, Hayes J Jr (2007) An estimate of managed colony losses in the winter of 2006–2007: a report commissioned by the apiary inspectors of America. Am Bee J 147:599–603Google Scholar
  270. Vanengelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Coxfoster D, Chen Y, Underwood RM, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PloS ONE 4:e6481PubMedCrossRefGoogle Scholar
  271. Vanengelsdorp D, Hayes J Jr, Underwood RM, Pettis JS (2010) A survey of honey bee colony losses in the US, fall 2008 to spring 2009. J Apic Res 49(1):7–14CrossRefGoogle Scholar
  272. vanEnglesdorp D, Meixner M (2010) A historical review of managed honey bee populations in Europe and the United States and factors that may affect them. J Invertebr Pathol 103:S80–S95CrossRefGoogle Scholar
  273. Vejsnæs F, Kryger P (2010) Factors involved in the recent increase in colony losses in Denmark. J Apic Res 49(1):109–110CrossRefGoogle Scholar
  274. Verma LR (1987) Pollination ecology of apple orchids by hymenopterous insects in Matiama Narkanda temperate zone. Final report. Ministry of Environment and Forests, Govt. of India, p 118Google Scholar
  275. Verma LR (1990) Beekeeping in integrated mountain development. Oxford and IBH Publishing Co. Pvt. Ltd., New DelhiGoogle Scholar
  276. Verma LR (ed) (1992b) Honeybees in mountain agriculture. Oxford and IBH Publishing Company, New Delhi (Keywords: beekeeping, environmental effects)Google Scholar
  277. Verma LR (1992a) Declining genetic diversity of Api cerana in Hindu-Kush Himalayan region. In: Asian apiculture. Connor LJ et al. (ed) pp 81–88Google Scholar
  278. Verma S (1993) Biodiversity in Asian honey bees: cytological perspectives. In: Connor LJ, Rinderer TE, Sylvester HA, Wongsiri S (eds) Asian apiculture. Wicwas Press, Cheshire, pp 89–93, Keywords: genetics, honey, reproductionGoogle Scholar
  279. Warren MS, Hill JK et al (2001) Rapid responses of British butterflies to opposing forces of ­climate and habitat change. Nature 414(6859):65–69PubMedCrossRefGoogle Scholar
  280. Watanabe ME (2008) Colony collapse disorder: many suspects, no smoking gun. Bioscience 58:384–388CrossRefGoogle Scholar
  281. Westphal C et al (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965CrossRefGoogle Scholar
  282. Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7(6):270–277PubMedCrossRefGoogle Scholar
  283. Williams IH (1996) Aspects of bee diversity and crop pollination in the European Union. In: Metheson A (ed) The conservation of bees. Academic, London, pp 63–80Google Scholar
  284. Williams PH et al (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Conserv 138:493–505CrossRefGoogle Scholar
  285. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387PubMedCrossRefGoogle Scholar
  286. Wilson EO (1999) The diversity of life, new editionth edn. W.W. Norton and Company, Inc., New YorkGoogle Scholar
  287. Winder JA (1977) Some organic substrates which serve as insect breeding sites in Bahian cocoa Plantations. Rev Braz Biol 37:351–356Google Scholar
  288. Winfree R, Kremen C (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc R Soc Lond B Biol Sci 276:229–237CrossRefGoogle Scholar
  289. Winfree R et al (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223PubMedCrossRefGoogle Scholar
  290. Winfree R et al (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076PubMedCrossRefGoogle Scholar
  291. Woolhouse MEJ et al (2005) Emerging pathogens: the epidemiology and Evolution of species jumps. Trends Ecol Evol 20:238–244PubMedCrossRefGoogle Scholar
  292. Young AM (1982) Effect of shade cover and availability of midge breeding sites on pollinating midge populations and fruit set in two cacao farms. J Appl Ecol 19:149–155CrossRefGoogle Scholar
  293. Zhen-Ming J, Guanhang Y, Shuangxiu H, Shikui L, Zaijin R (1992) The advancement of apicultural science and technology in China. In: Verma LR (ed) Honeybees in mountain agriculture. Oxford and IBH Publishing Co Pty Ltd, New Delhi, pp 133–147Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Entomology Faculty of AgricultureSher-e-Kashmir University of Agricultural Sciences and TechnologyJammuIndia

Personalised recommendations