Skip to main content

Methyl Jasmonate as Chemical Elicitor of Induced Responses and Anti-Herbivory Resistance in Young Conifer Trees

Part of the Progress in Biological Control book series (PIBC,volume 12)

Abstract

Exogenous application of phytohormones such as methyl jasmonate (MJ) can induce chemical and anatomical changes that lead to a reduction in insect herbivory and disease incidence in herbaceous and woody plants. However, exogenous application of MJ also produces notable disadvantages in terms of plant growth and physiology. In this chapter we review current published literature about the effects of exogenous application of MJ in defence responses and herbivory resistance of young conifer trees, as well as their implications for plant growth and physiology. Moreover, we proposed a series of recommendations for the use of MJ as chemical elicitor in young conifer trees.

Keywords

  • Insect Herbivore
  • Methyl Jasmonate
  • Exogenous Application
  • Methyl Jasmonate
  • Defensive Response

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-1933-0_15
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-1933-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3

References

  1. Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phytochem 10:1–40

    CAS  Google Scholar 

  2. Mery G, Katila P, Galloway G, Alfaro RI, Kanninen M, Lobovikov M, Varjo J (2010) Forests and society – responding to global drivers of change, vol 25, IUFRO World Series. IUFRO, Vienna

    Google Scholar 

  3. Walton A, Hughes J, Eng M, Fall A, Shore T, Riel B, Hall P (2008) Provincial-level projection of the current Mountain pine beetle outbreak: update of the infestation projection based on the 2007 Provincial aerial overview of forest health and revisions to the model (BCMPB.v5). B.C. Ministry of Forests and Range, Victoria

    Google Scholar 

  4. Smith TW, Cramer WP, Dixon RK, Neilson RP, Solomon AM (1993) The global terrestrial carbon cycle. Water Air Soil Pollut 70:19–37

    CrossRef  CAS  Google Scholar 

  5. Farjon A (2010) A handbook of the world’s conifers. Brill Academic Publishers, Leiden

    Google Scholar 

  6. Schulman E (1954) Longevity under adversity in conifers. Science 119:396–399

    PubMed  CrossRef  CAS  Google Scholar 

  7. Franceschi V, Krokene P, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376

    PubMed  CrossRef  CAS  Google Scholar 

  8. Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    PubMed  CrossRef  Google Scholar 

  9. Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724

    PubMed  CrossRef  CAS  Google Scholar 

  10. Mumm R, Hilker M (2006) Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci 11:351–358

    PubMed  CrossRef  CAS  Google Scholar 

  11. Pasquier-Barre F, Géri C, Goussard F, Auger-Rozenberg MA, Grenier S (2000) Oviposition preference and larval survival of Diprion pini on Scots pine clones in relation to foliage characteristics. Agric For Entomol 2:185–192

    CrossRef  Google Scholar 

  12. Barre F, Goussard F, Géri C (2003) Variation in the suitability of Pinus sylvestris to feeding by two defoliators, Diprion pini (Hym., Diprionidae) and Graellsia isabellae galliaegloria (Lep., Attacidae). J Appl Entom 127:249–257

    CrossRef  Google Scholar 

  13. Siciliano T, Leo MD, Bader A, Tommasi ND, Vrieling K, Braca A, Morelli I (2005) Pyrrolizidine alkaloids from Anchusa strigosa and their antifeedant activity. Phytochemistry 66:1593–1600

    PubMed  CrossRef  CAS  Google Scholar 

  14. Seigler DS (1998) Plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  15. Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–34710.1111/j.1365-2435.2010.01789.x

    Google Scholar 

  16. Alfaro RI (1995) An induced defense reaction in white spruce to attack by the white pine weevil Pissodes strobi. Can J For Res 25:1725–1730

    CrossRef  Google Scholar 

  17. Tomlin ES, Alfaro RI, Borden JH, He FL (1998) Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol 18:21–28

    PubMed  Google Scholar 

  18. Franceschi V, Krokene P, Krekling T, Christiansen E (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am J Bot 37:314–326

    CrossRef  Google Scholar 

  19. Krokene P, Solheim H, Krekling T, Christiansen E (2003) Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiol 23:191–197

    PubMed  Google Scholar 

  20. Klepzig KD, Kruger EL, Smalley EB, Raffa KF (1995) Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. J Chem Ecol 21:601–626

    CrossRef  CAS  Google Scholar 

  21. Sampedro L, Moreira X, Zas R (2010) Resistance and response of Pinus pinaster seedlings to Hylobius abietis after induction with methyl jasmonate. Plant Ecol 212:397–401. doi:10.1007/s11258-010-9830-x

    Google Scholar 

  22. Zulak KG, Dullat HK, Keeling CI, Lippert D, Bohlmann J (2010) Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation of diterpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry 71:1695–1699

    PubMed  CrossRef  CAS  Google Scholar 

  23. Lieutier F (2004) Host resistance to bark beetles and its variations. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe: a synthesis. Springer, Dordrecht, p 569

    CrossRef  Google Scholar 

  24. Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908

    PubMed  CrossRef  Google Scholar 

  25. Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopath 44:393–416

    CrossRef  CAS  Google Scholar 

  26. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    PubMed  CrossRef  CAS  Google Scholar 

  27. Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    PubMed  CrossRef  Google Scholar 

  28. Heidel AJ, Baldwin IT (2004) Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ 27:1362–1373

    CrossRef  CAS  Google Scholar 

  29. Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    PubMed  CrossRef  CAS  Google Scholar 

  30. Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S (2005) Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J Chem Ecol 31:1255–1267

    PubMed  CrossRef  CAS  Google Scholar 

  31. Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl-jasmonate: concentration effect and systemic response. Environ Exp Bot 67:94–100

    CrossRef  CAS  Google Scholar 

  32. Heijari J, Nerg A-M, Kainulainen P, Viiri H, Vuorinen M, Holopainen JK (2005) Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol Exp Appl 115:117–124

    CrossRef  CAS  Google Scholar 

  33. Gould N, Reglinski T, Spiers M, Taylor JT (2008) Physiological trade-offs associated with methyl jasmonate - induced resistance in Pinus radiata. Can J For Res 38:677–684

    CrossRef  Google Scholar 

  34. Orlander G, Nordlander G (2003) Effects of field vegetation control on pine weevil (Hylobius abietis) damage to newly planted Norway spruce seedlings. Annu For Sci 60:667–673

    CrossRef  Google Scholar 

  35. Holopainen JK, Heijari J, Nerg A-M, Vuorinen M, Kainulainen P (2009) Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open For Sci J 2:17–24

    CAS  Google Scholar 

  36. Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655

    PubMed  CrossRef  CAS  Google Scholar 

  37. Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Int Plant Biol 52:86–97

    CrossRef  CAS  Google Scholar 

  38. Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    PubMed  CrossRef  CAS  Google Scholar 

  39. Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Urós EM, Boland W, Strack D, Rodríguez-Concepción M, Bohlmann J, Gershenzon J (2007) Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol 65:243–257

    PubMed  CrossRef  CAS  Google Scholar 

  40. Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    PubMed  CrossRef  CAS  Google Scholar 

  41. Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene bio­synthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    PubMed  CrossRef  CAS  Google Scholar 

  42. Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    PubMed  CrossRef  CAS  Google Scholar 

  43. Sampedro L, Moreira X, Llusia J, Peñuelas J, Zas R (2010) Genetics, phosphorus availability and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. J Exp Bot 61:4437–4447

    PubMed  CrossRef  CAS  Google Scholar 

  44. Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083

    PubMed  CAS  Google Scholar 

  45. Richard S, Lapointe G, Rutledge RG, Séguin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol 41:982–987

    PubMed  CrossRef  CAS  Google Scholar 

  46. Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defenses in pine trees emerge only under low resources availability. J Ecol 99:818–827

    CrossRef  Google Scholar 

  47. Piggott N, Ekramoddoullah AKM, Liu J-J, Yu X (2004) Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol 64:1–8

    CrossRef  CAS  Google Scholar 

  48. Pervieux I, Bourassa M, Laurans F, Hamelin R, Séguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64:331–341

    CrossRef  CAS  Google Scholar 

  49. Liu J, Ekramoddoullah AKM, Zamani A (2005) A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in western white pine (Pinus monticola). Phytopathol 95:284–291

    CrossRef  CAS  Google Scholar 

  50. Franceschi V, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586

    PubMed  CrossRef  CAS  Google Scholar 

  51. Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251–264

    PubMed  CAS  Google Scholar 

  52. Hudgins JW, Christiansen E, Franceschi VR (2003) Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361–371

    PubMed  CAS  Google Scholar 

  53. Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    PubMed  CrossRef  CAS  Google Scholar 

  54. Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

    PubMed  CrossRef  Google Scholar 

  55. Bedon F, Levasseur C, Grima-Pettenati J, Séguin A, MacKay J (2009) Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Rep 28:787–800

    PubMed  CrossRef  CAS  Google Scholar 

  56. Peñuelas J, Llusia J, Estiarte M (1995) Terpenoids: a plant language. Trends Ecol Evol 10:289

    PubMed  CrossRef  Google Scholar 

  57. Peñuelas J, Llusiá J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404

    PubMed  CrossRef  Google Scholar 

  58. Pureswaran DS, Gries R, Borden JH (2004) Quantitative variation in monoterpenes in four species of conifers. Biochem Syst Ecol 32:1109–1136

    CrossRef  CAS  Google Scholar 

  59. Llusia J, Peñuelas J (2001) Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp Appl Acarol 25:65–77

    PubMed  CrossRef  CAS  Google Scholar 

  60. Kozlowski G, Buchala A, Métraux J-P (1999) Methyl jasmonate protects Norway spruce [Picea abies (L.) Karst.] seedlings against Pythium ultimum Trow. Physiol Mol Plant Pathol 55:53–58

    CrossRef  CAS  Google Scholar 

  61. Gould N, Reglinski T, Northcott GL, Spiers M, Taylor JT (2009) Physiological and biochemical responses in Pinus radiata seedlings associated with methyl jasmonate-induced resistance to Diplodia pinea. Physiol Mol Plant Pathol 74:121–128

    CrossRef  CAS  Google Scholar 

  62. Reglinski T, Spiers TM, Dick MA, Taylor JT, Gardner J (2009) Management of phytophthora root rot in radiata pine seedlings. Plant Pathol 58:723–730

    CrossRef  CAS  Google Scholar 

  63. Regvar M, Gogala N, Žnidaršič N (1997) Jasmonic acid affects mycorrhization of spruce seedlings with Laccaria laccata. Trees 11:511–514

    Google Scholar 

  64. Gómez S, van Dijk W, Stuefer JF (2009) Timing of induced resistance in a clonal plant network. Plant Biol 12:512–517

    CrossRef  Google Scholar 

Download references

Acknowledgements

Research was supported by the PSE 310000 and AGL 2010–18724 FOR projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xoaquín Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moreira, X., Zas, R., Sampedro, L. (2012). Methyl Jasmonate as Chemical Elicitor of Induced Responses and Anti-Herbivory Resistance in Young Conifer Trees. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_15

Download citation