Skip to main content

Activation of Grapevine Defense Mechanisms: Theoretical and Applied Approaches

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

Grapevine, as other plants, possesses an innate immune system that usually prevents infection by pathogens. General elicitors are compounds of different biochemical families capable of inducing plant defense reactions. In grapevine, the cascade of defense events induced by elicitors has been studied among others in cell suspensions. The perception of the elicitor triggers signaling events that allow the activation of defense genes encoding PR proteins and other proteins involved in phytoalexin production and cell wall reinforcement. The grapevine phytoalexins resveratrol and derivated compounds have been largely studied. In addition to their antimicrobial activity, they may also contribute to cell wall reinforcement. The mode of action and activity of elicitors depends on their chemical structure. Elicitors are of particular interest for crop protection since they can not only elicit defenses in a broad spectrum of plants, but are also mostly deprived of toxicity and suitable for industrial production from abundant sources. In spite of promising results, on the whole, application of induced resistance in the vineyard still often suffers from inconsistency and provides only limited disease control up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  2. Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  3. Thordal-Christensen H (2003) Fresh insights into processes of non host resistance. Curr Opin Plant Biol 6:351–357

    Article  PubMed  CAS  Google Scholar 

  4. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  5. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  6. Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals. Striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  7. Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    Article  PubMed  CAS  Google Scholar 

  8. Keen NT, Partridge TE, Ai Zaki T (1972) Pathogen-produced elicitor of a chemical defense mechanism in soybeans monogenically resistant to Phytophthora megasperma f. sp. glycinea. Phytopathology 62:768

    Google Scholar 

  9. Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  CAS  Google Scholar 

  10. Albersheim P, Darvill A (1985) Oligosaccharins. Sci Am 253:44–50

    Article  Google Scholar 

  11. Côté F, Hahn M (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26:1379–1411

    Article  PubMed  Google Scholar 

  12. Mackey D, Fall M (2006) MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol Microbiol 61:1365–1371

    Article  PubMed  CAS  Google Scholar 

  13. Boudart G, Charpentier M, Lafitte C, Martinez Y, Jauneau A, Gaulin E, Esquerré-Tugayé MT, Dumas B (2003) Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol 131:93–101

    Article  PubMed  CAS  Google Scholar 

  14. Vidal S, Eriksson ARB, Montesano M, Denecke J, Palva ET (1998) Cell wall-degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent induction of a plant defense response. Mol Plant Microbe Interact 11:23–32

    Article  CAS  Google Scholar 

  15. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650

    Article  PubMed  CAS  Google Scholar 

  16. Klarzynski O, Plesse B, Joubert J, Yvin J, Kopp M, Kloareg B, Fritig B (2000) Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1038

    Article  PubMed  CAS  Google Scholar 

  17. Potin P, Bouarab K, Küpper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr Opin Microbiol 2:276–283

    Article  PubMed  CAS  Google Scholar 

  18. Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  PubMed  CAS  Google Scholar 

  19. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

  20. Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  21. Vandelle E, Poinssot B, Wendehenne D, Bentejac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  PubMed  CAS  Google Scholar 

  23. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:U463–U465

    Article  CAS  Google Scholar 

  24. Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics 11:117

    Article  PubMed  CAS  Google Scholar 

  25. Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029–1038

    Article  PubMed  CAS  Google Scholar 

  26. Derckel JP, Legendre L, Audran JC, Haye B, Lambert B (1996) Chitinase of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in others tissues. Plant Sci 119:31–37

    Article  CAS  Google Scholar 

  27. Derckel JP, Baillieul F, Manteau S, Audran JC, Haye B, Lambert B, Legendre L (1999) Differential induction of grapevine defenses by two strains of Botrytis cinerea. Phytopathology 89:197–203

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48:325–336

    Article  CAS  Google Scholar 

  29. Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, Buffard D (2002) Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci 162:389–400

    Article  CAS  Google Scholar 

  30. Derckel JP, Audran JC, Haye B, Lambert B, Legendre L (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol Plant 104:56–64

    Article  CAS  Google Scholar 

  31. Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiology 114:771–778

    Article  PubMed  CAS  Google Scholar 

  32. Salzman R, Tikhonova I, Bordelon B, Hasegawa P, Bressan R (1998) Coordinate accumulation of antifungal proteins and hexoses constitute a developmentally controlled defense response during fruit ripening in grape. Plant Physiol 117:465–472

    Article  PubMed  CAS  Google Scholar 

  33. Renault AS, Deloire A, Bierne J (1996) Pathogenesis-related proteins in grapevine induced by salicylic acid and Botrytis cinerea. Vitis 35:49–52

    CAS  Google Scholar 

  34. Robert N, Ferran J, Breda C, Coutos-Thévenot P, Boulay M, Buffard D, Esnault R (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase and class 10 PR protein. Eur J Plant Pathol 107:249–261

    Article  CAS  Google Scholar 

  35. Gomes E, Sagot E, Gaillard C, Laquitaine L, Poinssot B, Sanejouand Y, Delrot S, Coutos-Thevenot P (2003) Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Mol Plant Microbe Interact 16:456–464

    Article  PubMed  CAS  Google Scholar 

  36. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Mol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  37. Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152

    Article  PubMed  CAS  Google Scholar 

  38. Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) Delta-viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51:5488–5492

    Article  PubMed  CAS  Google Scholar 

  39. Pryce RJ, Langcake P (1977) Alpha-viniferin: an antifungal resveratrol trimer from grapevines. Phytochemistry 16:1452–1454

    Article  CAS  Google Scholar 

  40. LangcakeP PRJ (1977) Oxidative dimerization of 4-hydroxystilbene in vitro: production of grapevine phytoalexin mimic. J Chem Soc Chem Commun 1412:208–210

    Article  Google Scholar 

  41. Langcake P, Cornford CA, Pryce RJ (1979) Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochemistry 18:1025–1027

    Article  CAS  Google Scholar 

  42. Jeandet P, Bessis R, Sbaghi M, Meunier P (1994) Occurence of a resveratrol-β-D-glucoside in wine. Vitis 33:183–184

    CAS  Google Scholar 

  43. Waterhouse L, Lamuela-Raventos R (1994) The occurence of piceid, a stilbene glucoside in grape berries. Phytochemistry 37:571–573

    Article  CAS  Google Scholar 

  44. Goldberg DM, Ng E, Karumanchiri A, Diamandis EP, Soleas GJ (1995) The assay of resveratrol glycosides and isomers in wine by direct-injection HPLC. J Chromatogr A 708:89–98

    Article  CAS  Google Scholar 

  45. Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG (2007) Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J Agric Food Chem 55:4913–4920

    Article  PubMed  CAS  Google Scholar 

  46. Fritzemeier KH, Kindl H (1981) Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151:48–52

    Article  CAS  Google Scholar 

  47. Lanz T, Schröder G, Schröder J (1990) Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogea. Planta 181:169–175

    Article  CAS  Google Scholar 

  48. Melchior F, Kindl H (1991) Coordinate-and elicitor-dependant expression of stilbene synthase and phenylalanine ammonia lyase genes in Vitis cv Optima. Arch Biochem Biophys 288:552–557

    Article  PubMed  CAS  Google Scholar 

  49. Richter H, Pezet R, Viret O, Gindro K (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248–260

    Article  CAS  Google Scholar 

  50. Schröder G, Brown J, Schröder J (1988) Molecular analysis of resveratrol synthase. cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem 172:161–169

    Article  PubMed  Google Scholar 

  51. Sparvoli F, Martin C, Scienza A, Gavazzio G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  52. Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667–677

    Article  PubMed  CAS  Google Scholar 

  53. Schröder J, Schröder G (1990) Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways. Z Naturforsch 45:1–8

    Google Scholar 

  54. Hart JH (1981) Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopathol 19:437–458

    Article  CAS  Google Scholar 

  55. Hart JH, Shrimpton DM (1979) Role of stilbenes in resistance of wood to decay. Phytopathology 69:1138–1143

    Article  CAS  Google Scholar 

  56. Schultz TP, Hubbard TF, Jin L, Fisher TH, Nicholas DD (1990) Role of stilbenes in the natural durability of wood: fungicidal structure-activity relationships. Phytochemistry 29:1501–1507

    Article  CAS  Google Scholar 

  57. Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702

    Article  CAS  Google Scholar 

  58. Hoos G, Blaich R (1990) Influence of resveratrol on germination of conidia and mycelia growth of Botrytis cinerea and Phomopsis viticola. J Phytopathol 129:102–110

    Article  CAS  Google Scholar 

  59. Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303

    Article  CAS  Google Scholar 

  60. Pont V, Pezet R (1990) Relation between the chemical structure and the biological activity of hydroxystilbenes against Botrytis cinerea. J Phytopathol 130:1–8

    Article  CAS  Google Scholar 

  61. Dai GH, Andary C, Mondolot-Cosson L, Boubals D (1995) Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia. Physiol Mol Plant Pathol 46:177–188

    Article  Google Scholar 

  62. Douillet-Breuil AC, Jeandet P, Adrian M, Bessis R (1999) Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J Agric Food Chem 47:4456–4461

    Article  PubMed  CAS  Google Scholar 

  63. Gindro K, Spring JL, Pezet R, Richter H, Viret O (2006) Histological and biochemical criteria for objective and early selection of grapevine cultivars resistant to Plasmopara viticola. Vitis 45:191–196

    Google Scholar 

  64. Pool RM, Creasy LL, Frackelton AS (1981) Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Vitis 20:136–145

    CAS  Google Scholar 

  65. Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR10 promoter. J Exp Bot 358:901–910

    Article  Google Scholar 

  66. Hain R, Reif H, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier P, Stöcker R (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  67. Adrian M, Jeandet P, Bessis R, Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride (AlCl3). J Agric Food Chem 44:1979–1981

    Article  CAS  Google Scholar 

  68. Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426

    Article  PubMed  CAS  Google Scholar 

  69. Borie B, Jeandet P, Bessis R, Adrian M (2003) Comparison of resveratrol and stilbene synthase mRNA production from grapevine leaves treated with biotic and abiotic phytoalexin elicitors. Am J Enol Vitic 55:60–64

    Google Scholar 

  70. Langcake P, Pryce RJ (1977) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16:1193–1196

    Article  CAS  Google Scholar 

  71. Lesniewska E, Adrian M, Klinger A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178

    Article  PubMed  CAS  Google Scholar 

  72. Calderon AA, Pedreno MA, Ros Barcelo A, Munoz R (1990) A spectrophotometric assay for quantitative analysis of the oxidation of 4-hydroxystilbene by peroxidase-H2O2 systems. J Biochem Biophys Methods 20:171–180

    Article  PubMed  CAS  Google Scholar 

  73. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  74. Allègre M, Daire X, Héloir MC, Trouvelot S, Mercier L, Adrian M, Pugin A (2007) Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytol 173:832–840

    Article  PubMed  CAS  Google Scholar 

  75. Gindro K, Pezet R, Viret O (2003) Histological study of the responses of two Vitis vinifera cultivars (resistant and susceptible) to Plasmopara viticola infections. Plant Physiol Biochem 41:846–853

    Article  CAS  Google Scholar 

  76. Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant Microbe Interact 18:819–829

    Article  PubMed  CAS  Google Scholar 

  77. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  78. Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  PubMed  CAS  Google Scholar 

  79. Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signalling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    Article  PubMed  CAS  Google Scholar 

  80. Allègre M, Héloir MC, Trouvelot S, Daire X, Pugin A, Wendehenne D, Adrian M (2009) Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Mol Plant Microbe Interact 22:977–986

    Article  PubMed  CAS  Google Scholar 

  81. Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564

    Article  PubMed  CAS  Google Scholar 

  82. De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  83. Mathieu Y, Kurkdijan A, Xia H, Guern J, Koller A, Spiro M, O’Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1:333–343

    Google Scholar 

  84. Mathieu Y, Sanchez FJ, Droillard MJ, Lapous D, Laurière C, Guern J (1996) Involvement of protein phosphorylation in the early steps of transduction of the oligogalacturonide signal in tobacco cells. Plant Physiol Biochem 34:399–408

    CAS  Google Scholar 

  85. Ten Have A, Mulder W, Visser J, Van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required to full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  86. Lauge R, Dmitriev AP, Joosten MHAJ, De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11:301–308

    Article  CAS  Google Scholar 

  87. Lauge R, Goodwin PH, de Wit PJGM, Joosten MHAJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J 23:735–745

    Article  PubMed  CAS  Google Scholar 

  88. He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266

    Article  PubMed  CAS  Google Scholar 

  89. Lee J, Klessig DF, Nurnberger T (2001) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079–1093

    Article  PubMed  CAS  Google Scholar 

  90. Nimchuk Z, Rohmer L, Chang JH, Dangl JL (2001) Knowing the dancer from the dance: R gene products and their interactions with other proteins from host and pathogen. Curr Opin Plant Biol 4:288–294

    Article  PubMed  CAS  Google Scholar 

  91. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  92. Côté F, Ham K, Hahn M, Bergmann C (1998) Oligosaccharide elicitors in host pathogen interactions. Generation, perception, and signal transduction. Subcell Biochem 29:385–432

    PubMed  Google Scholar 

  93. Courtois J (2009) Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr Opin Microbiol 12:261–273

    Article  PubMed  CAS  Google Scholar 

  94. Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734–36740

    Article  PubMed  CAS  Google Scholar 

  95. Inui H, Yamaguchi Y, Hirano S (1997) Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase and L-phenylalanine ammonia-lyase induction in rice suspension culture. Biosci Biotechnol Biochem 61:975–978

    Article  PubMed  CAS  Google Scholar 

  96. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert J, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128

    Article  PubMed  CAS  Google Scholar 

  97. Ménard R, de Ruffray P, Fritig B, Yvin JC, Kauffmann S (2005) Defense and resistance inducing activities in tobacco of the sulfated beta-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule. Plant Cell Physiol 46:1964–1972

    Article  PubMed  CAS  Google Scholar 

  98. Trouvelot S, Varnier A, Allegre M, Mercier L, Baillieul F, Arnould C, Gianinazzi-Pearson V, Klarzynski O, Joubert J, Pugin A, Daire X (2008) A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HRlike cell death. Mol Plant Microbe Interact 21:232–243

    Article  PubMed  CAS  Google Scholar 

  99. Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  100. Van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103:5602–5607

    Article  PubMed  CAS  Google Scholar 

  101. Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defence mechanisms in Arabidopsis by beta-aminobutyric acid. Proc Natl Acad Sci 97:12920–12925

    Article  PubMed  CAS  Google Scholar 

  102. Reuveni M, Zahavi T, Cohen Y (2001) Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with beta-aminobutyric acid (BABA). Phytoparasitica 29:125–133

    Article  CAS  Google Scholar 

  103. Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Mérillon JM (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54:9119–9125

    Article  PubMed  CAS  Google Scholar 

  104. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  105. Tally A, Oostendorp M, Lawton K, Staub T, Bassy B (1999) Commercial development of elicitors of induced resistance to pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. American Phytopathological Society Press, St Paul

    Google Scholar 

  106. Iriti M, Rossoni M, Borgo Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53:9133–9139

    Article  PubMed  CAS  Google Scholar 

  107. van Loon LC, Pahm Bakker WHW, van der Heijdt WD, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 21(12):1609–1621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J Negrel A Büchwalter, C Dubreuil, A Gauthier, A Klinguer and E Steimetz for their contribution to experiments presented in this chapter. Parts of the work received the financial support of the Conseil Régional de Bourgogne, Bureau Interprofessionnel des Vins de Bourgogne (BIVB) and Goëmar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielle Adrian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Adrian, M., Trouvelot, S., Gamm, M., Poinssot, B., Héloir, MC., Daire, X. (2012). Activation of Grapevine Defense Mechanisms: Theoretical and Applied Approaches. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_13

Download citation

Publish with us

Policies and ethics