Abstract

It is well known that the quantum harmonic oscillator is analog of the classical harmonic oscillator. It is one of the most important model systems in quantum mechanics. Even though the linear harmonic oscillator may represent rather non-elementary objects like a solid and a molecule, it provides a window into the most elementary structure of the physical world. In this Chapter, we shall study its exact solutions in arbitrary dimensions, the recurrence relations for the radial wavefunction, the realization of dynamic algebra su(1,1) and the pseudoharmonic oscillator.

Keywords

Harmonic Oscillator Recurrence Relation Quantum Harmonic Oscillator Confluent Hypergeometric Function Ladder Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Nonrelativistic Theory, 3rd edn. Pergamon, New York (1977) Google Scholar
  2. 3.
    Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007) MATHGoogle Scholar
  3. 14.
    Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part II. The n-fold degenerate oscillator. J. Mol. Spectrosc. 4, 298–333 (1960) ADSCrossRefGoogle Scholar
  4. 58.
    Yáñez, R.J., Van Assche, W., Dehesa, J.S.: Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 50, 3065–3079 (1994) ADSCrossRefGoogle Scholar
  5. 88.
    Joseph, A.: Self-adjoint ladder operators (I). Rev. Mod. Phys. 39, 829–837 (1967) ADSCrossRefMATHGoogle Scholar
  6. 89.
    Coulson, C.A., Joseph, A.: Self-adjoint ladder operators. II. Rev. Mod. Phys. 39, 838–849 (1967) ADSCrossRefGoogle Scholar
  7. 102.
    Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Exactly complete solutions of the pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47(4), 1039–1057 (2008) CrossRefMathSciNetGoogle Scholar
  8. 192.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 5th edn. Pergamon, New York (1994) Google Scholar
  9. 193.
    Infeld, L., Hull, T.E.: The factorization method. Rev. Mod. Phys. 23, 21–68 (1951) ADSCrossRefMathSciNetMATHGoogle Scholar
  10. 194.
    Gur, Y., Mann, A.: Radial coherent states—from the harmonic oscillator to the hydrogen atom. Phys. At. Nucl. 68, 1700–1708 (2005) CrossRefMathSciNetGoogle Scholar
  11. 195.
    Goldman, I.I., Krivchenkov, V.D.: Problems in Quantum Mechanics. Pergamon, Oxford (1961) Google Scholar
  12. 196.
    Post, H.R.: Many-particles systems: II. Proc. Phys. Soc. A 69, 936–938 (1956) ADSCrossRefGoogle Scholar
  13. 197.
    Palma, G., Raff, U.: The one-dimensional harmonic oscillator in the presence of a dipole-like interaction. Am. J. Phys. 71, 247 (2003) ADSCrossRefMATHGoogle Scholar
  14. 198.
    Hurley, J.: One-dimensional three-body problem. J. Math. Phys. 8, 813 (1967) ADSCrossRefGoogle Scholar
  15. 199.
    Calogero, F.: Ground state of a one-dimensional N-body system. J. Math. Phys. 10, 2197 (1969) ADSCrossRefMathSciNetGoogle Scholar
  16. 200.
    Calogero, F.: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971) ADSCrossRefMathSciNetGoogle Scholar
  17. 201.
    Camiz, P., Gerardi, A., Marchioro, C., Presutti, E., Scacciatelli, E.: Exact solution of a time-dependent quantal harmonic oscillator with a singular perturbation. J. Math. Phys. 12, 2040 (1971) ADSCrossRefMathSciNetGoogle Scholar
  18. 202.
    Dodonov, V.V., Malkin, I.A., Man’ko, V.I.: Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597–615 (1974) ADSCrossRefMathSciNetGoogle Scholar
  19. 203.
    Dodonov, V.V., Malkin, I.A., Man’ko, V.I.: Green function and excitation of a singular oscillator. Phys. Lett. A 39, 377–378 (1972) ADSCrossRefMathSciNetGoogle Scholar
  20. 204.
    Ballhausen, C.J.: A note on the V=A/x 2+Bx 2 potential. Chem. Phys. Lett. 146, 449–451 (1988) ADSCrossRefGoogle Scholar
  21. 205.
    Ballhausen, C.J.: Step-up and step-down operators for the pseudo-harmonic potential V=r 2/2+B/2r 2 in one and two dimensions. Chem. Phys. Lett. 151, 428–430 (1988) ADSCrossRefGoogle Scholar
  22. 206.
    Friš, J., Mandrosov, V., Smorodinsky, Ya.A., Uhlíř, M., Winternitz, P.: On higher symmetries in quantum mechanics. Phys. Lett. 16, 354–356 (1965) ADSCrossRefMathSciNetGoogle Scholar
  23. 207.
    Popov, D.: Barut-Girardello coherent states of the pseudoharmonic oscillator. J. Phys. A, Math. Gen. 34, 5283–5296 (2001) ADSMATHGoogle Scholar
  24. 208.
    Sage, M.L.: The vibrations and rotations of the pseudogaussian oscillator. Chem. Phys. 87, 431–439 (1984) ADSCrossRefGoogle Scholar
  25. 209.
    Dong, S.H., Ma, Z.Q.: Algebraic approach to the pseudoharmonic oscillator in 2D. Int. J. Mod. Phys. E 11, 155–160 (2002) ADSCrossRefGoogle Scholar
  26. 210.
    Dong, S., Dong, S.H., Lozada-Cassou, M.: Algebraic approach to a harmonic oscillator plus an inverse squared potential and its recurrence relation. Phys. Scr. 73, 173–177 (2006) ADSCrossRefMathSciNetMATHGoogle Scholar
  27. 211.
    Schrödinger, E.: Further studies on solving eigenvalue problems by factorization. Proc. R. Ir. Acad. A 46, 183–206 (1940) Google Scholar
  28. 212.
    Berrondo, M., Palma, A.: The algebraic approach to the Morse oscillator. J. Phys. A, Math. Gen. 13, 773 (1980) ADSCrossRefMathSciNetGoogle Scholar
  29. 213.
    Stahlhofen, A., Bleuler, K.: An algebraic form of the factorization method. Nuovo Cimento B 104, 447–465 (1989) ADSCrossRefMathSciNetGoogle Scholar
  30. 214.
    Adams, B.G., Čižek, J., Paldus, J.: In: Löwdin, P.-O. (ed.) Lie Algebraic Methods and Their Applications to Simple Quantum Systems. Advances in Quantum Chemistry, vol. 19. Academic Press, New York (1988) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Escuela Superior de Física y Matemáticas, Unidad Profesional Adolfo López MateosInstituto Politécnico NacionalMexico DFMexico

Personalised recommendations