Skip to main content
  • 1501 Accesses

Abstract

The model of higher-dimensional space-time is a powerful ingredient to be needed to unify the interactions of various fields in nature. In this Chapter, we shall briefly review the development of the high-dimensional Kaluza-Klein theory, in particular, the (4+D) dimensional Kaluza-Klein theories and the particle spectrum of Kaluza-Klein theory for fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Up to now, there exist two main types of compactifications of an extra dimension. The first is a circular compactification. With this extra dimension the entire space can be denoted M 4×S 1, where M 4 is the regular Minkowski space and S 1 is the circle with a radius R. It is chosen to be small enough to avoid detection. Another type is an orbifold compactification by imposing the discrete Z 2 symmetry, where y→−y on the circle.

  2. 2.

    The large extra dimension scenario of ADD was proposed as a potential solution to the hierarchy problem, i.e., the question of why the reduced Planck scale \(\bar {M}_{\mathrm{pl}}\simeq 2. 4\cdot 10^{18}\) is so much larger than the weak scale ∼1 TeV. They propose that we live on an assumed to be rigid 4D hypersurface (also named a wall or brane). The gravity is allowed to propagate in a (4+D)-dimensional n-torus T n, whose radii are equal to R.

  3. 3.

    In modern geometry the extra 5th dimension can be understood as a circle group U(1) since the electromagnetism can be formulated essentially as a gauge theory on a fiber bundle, the circle bundle, with gauge group U(1). If one is able to understand this geometrical interpretation, it is relatively straightforward to replace U(1) by a general Lie group. Such generalizations are often called Yang-Mills theories. If a distinction is drawn between them, then the Yang-Mills theories occur on a flat space-time, while Kaluza-Klein treats a more general case of curved space-time. The base space of Kaluza-Klein theory need not be four-dimensional space-time; it can be any pseudo-Riemannian manifold, or even a supersymmetric manifold or orbifold.

  4. 4.

    The choice of a time-like extra dimension shall lead to the tachyon. Tachyons are well known to be very dangerous in most theories. This seems to imply that we should only pick the space-like solution.

  5. 5.

    In fact in (4+D) dimensions a gauge field can be decomposed into a 4D gauge Kaluza-Klein tower plus D distinct scalar towers.

References

  1. Nordstrom, G.: On the possibility of unifying the electromagnetic and the gravitational fields. Z. Phys. 15, 504–506 (1914)

    Google Scholar 

  2. Kaluza, T.: Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. Kl. 1, 966–972 (1921)

    Google Scholar 

  3. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37(12), 895–906 (1926)

    Article  ADS  Google Scholar 

  4. Klein, O.: The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926)

    Article  ADS  Google Scholar 

  5. Einstein, A., Bergmann, P.: On a generalisation of Kaluza’s theory of electricity. Ann. Math. 34, 683–701 (1938)

    Article  MathSciNet  Google Scholar 

  6. Einstein, A.: Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities. Rev. Univ. Nac. Tucumán Ser. A 2, 11–16 (1941)

    MathSciNet  Google Scholar 

  7. Einstein, A., Bargmann, V., Bergmann, P.: On the five-dimensional representation of gravitation and electricity. In: Theodore von Karman Anniversary Volume, pp. 212–225. California Institute of Technology, Pasadena (1941)

    Google Scholar 

  8. Einstein, A., Pauli, W.: On the non-existence of regular stationary solutions of relativistic field equations. Ann. Math. 44, 131–137 (1943)

    Article  MathSciNet  Google Scholar 

  9. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  10. Delgado, A.: Xtra-Dimensional world(s). J. Phys. Conf. Ser. 53, 359 (2006)

    Article  Google Scholar 

  11. Pérez-Lorenzana, A.: An introduction to extra dimensions. J. Phys. Conf. Ser. 18, 224 (2005)

    Article  ADS  Google Scholar 

  12. Randall, L., Sundrum, R.: Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4960–4963 (1999)

    Google Scholar 

  14. Arkani-Hamed, N., Dimopoulos, S., Dvali, G., Kaloper, N.: Infinitely large new dimensions. Phys. Rev. Lett. 84, 586–589 (2000)

    Article  ADS  Google Scholar 

  15. Long, J.C., Chan, H.W., Price, J.C.: Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B 539, 23–34 (1999)

    Article  ADS  Google Scholar 

  16. Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., Swanson, H.E.: Sub-mm tests of the gravitational inverse-square law. Phys. Rev. D 70, 042004 (2004)

    Article  ADS  Google Scholar 

  17. Hoyle, C.D., Schmidt, U., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Kapner, D.J., Swanson, H.E.: Submillimeter test of the gravitational inverse-square law: a search for “large” extra dimensions. Phys. Rev. Lett. 86, 1418–1421 (2001)

    Article  ADS  Google Scholar 

  18. Long, J.C., Chan, H.W., Churnside, A.B., Gulbis, E.A., Varney, M.C.M., Price, J.C.: 1. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003)

    Article  ADS  Google Scholar 

  19. Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., Swanson, H.E.: Submillimeter tests of the gravitational inverse-square law. Phys. Rev. D 70, 042004 (2004)

    Article  ADS  Google Scholar 

  20. Wesson, P.S.: The effective properties of matter of Kaluza-Klein solitons. Phys. Lett. B 276, 299–302 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wesson, P.S., de Leon, J.P.: Kaluza-Klein equations, Einstein’s equations, and an effective energy-momentum tensor. J. Math. Phys. 33, 3883 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Wesson, P.S.: A physical interpretation of Kaluza-Klein cosmology. Astrophys. J. 394, 19–24 (1992)

    Article  ADS  Google Scholar 

  23. Wesson, P.S.: The geometrical unification of gravity with its source. Gen. Relativ. Gravit. 40, 1353–1365 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Randall, L., Sundrum, R.: Fermion-Boson duality in integrable quantum field theory. Mod. Phys. Lett. A 13, 2807–2818 (1998)

    Article  Google Scholar 

  25. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  26. Maartens, R.: Brane-world gravity. Living Rev. Relativ. 7 (2004). irr-2004-7

    Google Scholar 

  27. Bailin, D., Love, A.: Kaluza-Klein theories. Rep. Prog. Phys. 50, 1087 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. van Dongen, J.: Einstein and the Kaluza-Klein particle. Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Mod. Phys. 33, 185–210 (2002)

    Article  Google Scholar 

  29. DeWitt, B.: In: DeWitt, B., DeWitt, C. (eds.) Relativity, Groups and Topology Lectures at 1963 Les Houches School. Gordon & Breach, New York (1964)

    Google Scholar 

  30. Kerner, R.: Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. Henri Poincaré A 9, 143–152 (1968)

    MathSciNet  Google Scholar 

  31. Trautman, A.: Fibre bundles associated with space-time. Rep. Math. Phys. 1, 29–62 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Cho, Y.M.: Higher-dimensional unifications of gravitation and gauge theories. J. Math. Phys. 16, 2029 (1975)

    Article  ADS  Google Scholar 

  33. Cho, Y.M., Freund, P.G.: Non-Abelian gauge fields as Nambu-Goldstone fields. Phys. Rev. D 12, 1711–1720 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. Scherk, J., Schwarz, J.H.: Dual field theory of quarks and gluons. Phys. Lett. B 57, 463–466 (1975)

    Article  ADS  Google Scholar 

  35. Cremmer, E., Scherk, J.: Spontaneous compactification of extra space dimensions. Nucl. Phys. B 118, 61–75 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cremmer, E., Julia, B., Scherk, J.: Supergravity in theory in 11 dimensions. Phys. Lett. B 76, 409–412 (1978)

    Article  ADS  Google Scholar 

  37. Cremmer, E., Julia, B.: The N=8 supergravity theory. I. The lagrangian. Phys. Lett. B 80, 48–51 (1978)

    Article  ADS  Google Scholar 

  38. Antoniadis, I.: A possible new dimension at a few TeV. Phys. Lett. B 246, 377 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998)

    Article  ADS  Google Scholar 

  40. Rizzo, T.: Introduction to extra dimensions. arXiv:1003.1698 [hep-ph] (2010)

  41. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  42. Witten, E.: Fermion quantum numbers in Kaluza-Klein theories. Princeton Preprint (1983). [Also see: Shelter Island, II. In: Jackiw, R., Khuri, N.N., Weinberg, S., Witten, E. (eds.) Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics, p. 227. MIT Press, Cambridge (1985)]

    Google Scholar 

  43. Schrödinger, E.: Diracsches Elektron im Schwerefeld I. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 11, 105–128 (1932)

    Google Scholar 

  44. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MATH  MathSciNet  Google Scholar 

  45. Destri, C., Orzalesi, C.A., Rossi, P.: Matter fields and metric deformations in multidimensional unified theories. Ann. Phys. (N.Y.) 147, 321–364 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Wu, Y.S., Zee, A.: Chiral anomalies, higher dimensions, and differential geometry. Nucl. Phys. B 239, 477–507 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. Atiyah, M., Hirzebruch, F.: In: Haeflinger, A., Narasiman, R. (eds.) Essays on Topology and Related Topics, p. 18. Springer, Berlin (1970)

    Google Scholar 

  48. Schellekens, A.N.: Fermion mass spectrum in a generalized instanton background. Nucl. Phys. B 250, 252–278 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  49. Schellekens, A.N.: Compactification of Einstein-Yang-Mills theories on CP n . Nucl. Phys. B 262, 661–688 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  50. Randjbar-Daemi, S., Salam, A., Strathdee, J.: Instanton induced compactification and fermion chirality. Phys. Lett. B 132, 56–60 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  51. Watamura, S.: Spontaneous compactification of D=10 Maxwell-Einstein theory leads to SU(3)×SU(2)×U(1) gauge symmetry. Phys. Lett. B 129, 188–192 (1983)

    Article  ADS  Google Scholar 

  52. Watamura, S.: Spontaneous compactification and CPN: SU(3)×SU(2)×U(1), \(\sin^{2} \theta_{W}\), g 3/g 2 and SU(3)-triplet chiral fermions in four dimensions. Phys. Lett. B 136, 245–250 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  53. Rubakov, V.A., Shaposhnikov, M.E.: Do we live inside a domain wall? Phys. Lett. B 125, 136–138 (1983)

    Article  ADS  Google Scholar 

  54. Visser, M.: An exotic class of Kaluza-Klein models. Phys. Lett. B 159, 22–25 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  55. Squires, E.J.: Dimensional reduction caused by a cosmological constant. Phys. Lett. B 167, 286–288 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  56. Gibbons, G.W., Wiltshire, D.L.: Spacetime as a membrane in higher dimensions. Nucl. Phys. B 287, 717–742 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  57. Gogberashvili, G.: Hierarchy problem in the shell-Universe model. Int. J. Mod. Phys. D 11, 1635–1638 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Kaluza-Klein Theory. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_17

Download citation

Publish with us

Policies and ethics