Advertisement

Abstract

The exact solutions of wave equations with a spherically symmetric potential have become an important subject in quantum mechanics. It should be noticed that many works along this line have been carried out in the usual three dimensional space. However, what extra dimensions could there possibly be if we never see them? It turns out that we do not really know yet how many dimensions our world has. Nevertheless, all that our current observations tell us is that the world around us is at least (3+1) dimensional space-time as illustrated in general relativity.

Keywords

Harmonic Oscillator Extra Dimension Harmonic Oscillator Potential Quantum Defect Theory Levinson Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1955) zbMATHGoogle Scholar
  2. 2.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Nonrelativistic Theory, 3rd edn. Pergamon, New York (1977) Google Scholar
  3. 3.
    Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007) zbMATHGoogle Scholar
  4. 4.
    Bagrov, V.G., Gitman, D.M.: Exact Solutions of Relativistic Wave Equations. Kluwer Academic, Dordrecht (1990) zbMATHGoogle Scholar
  5. 5.
    ter Haar, D.: Problems in Quantum Mechanics, 3rd edn. Pion, London (1975) Google Scholar
  6. 6.
    Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971) Google Scholar
  7. 7.
    Appelquist, T., Chodos, A., Freund, P.: Modern Kaluza-Klein Theories. Addison-Wesley, Reading (1987) zbMATHGoogle Scholar
  8. 8.
    Nordstrom, G.: On the possibility of unifying the electromagnetic and the gravitational fields. Z. Phys. 15, 504–506 (1914) Google Scholar
  9. 9.
    Kaluza, T.: Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. Kl. 1, 966–972 (1921) Google Scholar
  10. 10.
    Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37(12), 895–906 (1926) ADSCrossRefGoogle Scholar
  11. 11.
    Klein, O.: The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926) ADSCrossRefGoogle Scholar
  12. 12.
    Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    Louck, J.D., Shaffer, W.H.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part I. The twofold degenerate oscillator. J. Mol. Spectrosc. 4, 285–297 (1960) ADSCrossRefGoogle Scholar
  14. 14.
    Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part II. The n-fold degenerate oscillator. J. Mol. Spectrosc. 4, 298–333 (1960) ADSCrossRefGoogle Scholar
  15. 15.
    Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part III. Radial integrals. J. Mol. Spectrosc. 4, 334–341 (1960) ADSCrossRefGoogle Scholar
  16. 16.
    Appel, P., Kampé de Fériet, J.: Fonctions Hypergéométrique et Hypersphériques Polynomes d’Hermite, p. 202. Gauthier-Villars, Paris (1926) Google Scholar
  17. 17.
    Fock, V.: Zur Theorie des Wasserstoffatoms. Z. Phys. 98, 145–154 (1935) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Bargmann, V.: Zur Theorie des Wasserstoffatoms. Bemerkungen zur gleichamigen Arbeit von V. Foch. Z. Phys. 99, 576–582 (1936) ADSCrossRefGoogle Scholar
  19. 19.
    Sommerfeld, A.: Partial Differential Equation in Physics, p. 227. Academic Press, New York (1949) Google Scholar
  20. 20.
    Erdélyi, A.: Higher Transcendental Functions, vol. 2, Bateman Manuscript Project, p. 232. McGraw-Hill, New York (1953) Google Scholar
  21. 21.
    Bander, M., Itzykson, C.: Group theory and the hydrogen atom (I). Rev. Mod. Phys. 38, 330–345 (1966) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Shaffer, W.H.: Degenerate modes of vibration and perturbations in polyatomic molecules. Rev. Mod. Phys. 16, 245–259 (1944) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Baker Jr., G.A.: Degeneracy of the n-dimensional, isotropic, harmonic oscillator. Phys. Rev. 103, 1119–1120 (1956) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Alliluev, S.P.: On the relations between accidental degeneracy and hidden symmetry of a system. Sov. Phys. JETP 6, 156–159 (1958) ADSGoogle Scholar
  25. 25.
    Rasmussen, W.O., Salamó, S.: An algebraic approach to Coulomb scattering in N dimensions. J. Math. Phys. 20, 1064–1067 (1979) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Al-Jaber, S.M.: Quantization of angular momentum in the N-dimensional space. Nuovo Cimento B 110, 993–995 (1995) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Al-Jaber, S.M.: On the radial-part equation of the wavefunction in N dimensions. Nuovo Cimento B 112, 761–765 (1997) Google Scholar
  28. 28.
    Al-Jaber, S.M.: The fine structure of the N-dimensional hydrogen atom. Nuovo Cimento B 113, 651–657 (1998) ADSGoogle Scholar
  29. 29.
    Al-Jaber, S.M.: Hydrogen atom in N dimensions. Int. J. Theor. Phys. 37, 1289–1298 (1998) zbMATHCrossRefGoogle Scholar
  30. 30.
    de Broglie, L., Bohm, D., Hillion, P., Halbwachs, F., Takabayasi, T., Vigier, J.P.: Rotator model of elementary particles considered as relativistic extended structures in Minkowski space. Phys. Rev. 129, 438–450 (1963) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Granzow, K.: N-dimensional total orbital angular-momentum operator. II. Explicit representations. J. Math. Phys. 5(10), 1474–1477 (1964) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bergmann, D., Frishman, Y.: A relation between the hydrogen atom and multidimensional harmonic oscillators. J. Math. Phys. 6(12), 1855–1856 (1965) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Čížek, J., Paldus, J.: An algebraic approach to bound states of simple one-electron systems. Int. J. Quant. Chem. 12, 875–896 (1977) CrossRefGoogle Scholar
  34. 34.
    Kostelecky, V.A., Nieto, M.M., Truax, D.R.: Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions. Phys. Rev. D 32, 2627–2633 (1985) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Balantekin, A.B.: Accidental degeneracies and supersymmetric quantum mechanics. Ann. Phys. 164(2), 277–287 (1985) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Kostelecky, V.A., Russell, N.: Radial Coulomb and oscillator systems in arbitrary dimensions. J. Math. Phys. 37, 2166–2181 (1996) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zeng, G.J., Su, K.L., Li, M.: Most general and simplest algebraic relationship between energy eigenstates of a hydrogen atom and a harmonic oscillator of arbitrary dimensions. Phys. Rev. A 50(5), 4373–4375 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    Lévai, G., Kónya, B., Papp, Z.: Unified treatment of the Coulomb and harmonic oscillator potentials in D dimensions. J. Math. Phys. 39, 5811 (1998) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Shea, R.W., Aravind, P.K.: Degeneracies of the spherical well, harmonic oscillator and hydrogen atom in arbitrary dimensions. Am. J. Phys. 64(4), 430 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    Jafarizadeh, M.A., Goudarzi, H.: Degeneracy of Schrödinger equation with potential 1/r in d-dimensions. Indian J. Phys. B 72(1), 35–44 (1998) Google Scholar
  41. 41.
    Kirchberg, A., Länge, J.D., Pisani, P.A.G., Wipf, A.: Algebraic solution of the supersymmetric hydrogen atom in d dimensions. Ann. Phys. 303(2), 359–388 (2003) ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Witwit, M.R.M.: The eigenvalues of the Schrödinger equation for spherically symmetric states for various types of potentials in two, three and N dimensions, by using perturbative and non-perturbative methods. J. Phys. A, Math. Gen. 24(19), 4535 (1991) ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Imbo, T., Pagnamenta, A., Sukhatme, U.: Energy eigenstates of spherically symmetric potentials using the shifted 1/N expansion. Phys. Rev. D 29, 1669–1681 (1984) ADSCrossRefGoogle Scholar
  44. 44.
    Imbo, T., Sukhatme, U.: Shifted 1/N expansions for energy eigenvalues of the Schrödinger equation. Phys. Rev. D 28, 418–420 (1983) ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Imbo, T., Sukhatme, U.: Improved wavefunctions for large-N expansions. Phys. Rev. D 31, 2655–2658 (1985) ADSCrossRefGoogle Scholar
  46. 46.
    Varshni, Y.P.: Eigenenergies of the r 2+λr 2/(1+gr 2) potential obtained by the shifted 1/N expansion. Phys. Rev. A 36, 3009–3014 (1987) ADSCrossRefGoogle Scholar
  47. 47.
    Roychoudhury, R.K., Varshni, Y.P.: Shifted 1/N expansion and exact solutions for the potential V(r)=−Z/r+gr+λr 2. J. Phys. A, Math. Gen. 21, 3025 (1988) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Roychoudhury, R.K., Varshni, Y.P.: Rotating oscillator-shifted 1/N expansion and supersymmetric considerations. Phys. Rev. A 37, 2309–2313 (1988) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Christiansen, H., Epele, L.N., Fanchiotte, H., Garcia Canal, C.A.: Improved shifted 1/N expansion. Phys. Rev. A 40, 1760–1764 (1989) ADSCrossRefGoogle Scholar
  50. 50.
    Dutt, R., Mukherji, U., Varshni, Y.P.: Shifted large-N expansion for the bound states of the Hellmann potential. Phys. Rev. A 34, 777–784 (1986) ADSCrossRefGoogle Scholar
  51. 51.
    Papp, E.: Quasiclassical approach to the shifting parameter of the 1/N method. Phys. Rev. A 36, 3550–3555 (1987) ADSCrossRefGoogle Scholar
  52. 52.
    Atag, S.: Application of the shifted 1/N expansion to the rotational-vibrational states of the \(\mathrm{H}_{2}^{+}\) molecule. Phys. Rev. A 37, 2280–2283 (1988) ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Chatterjee, A.: Large-N expansions in quantum mechanics. Phys. Rep. 186, 249–370 (1990) ADSCrossRefGoogle Scholar
  54. 54.
    Hakobyan, Ye.M., Pogosyan, G.S., Sissakian, A.N.: Generalized D-dimensional oscillator: interbasis expansions. Phys. At. Nucl. 61, 1762–1767 (1998) MathSciNetGoogle Scholar
  55. 55.
    Papp, E.: q analogs of the radial Schrödinger equation in N space dimensions. Phys. Rev. A 52, 101–106 (1995) ADSCrossRefGoogle Scholar
  56. 56.
    Mlodinov, L.D., Papanicolaou, N.: SO(2,1) algebra and the large N expansion in quantum mechanics. Ann. Phys. 128, 314–334 (1980) ADSCrossRefGoogle Scholar
  57. 57.
    Gerry, C.C., Togeas, J.B.: A large-N phase integral approximation of Coulomb-type systems using SO(2,1) coherent states. J. Phys. A, Math. Gen. 19, 3797 (1986) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Yáñez, R.J., Van Assche, W., Dehesa, J.S.: Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 50, 3065–3079 (1994) ADSCrossRefGoogle Scholar
  59. 59.
    Wódkiewicz, K.: Fermi pseudopotential in arbitrary dimensions. Phys. Rev. A 43, 68–76 (1991) ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Romera, E., Sánchez-Moreno, P., Dehesa, J.S.: Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J. Math. Phys. 47, 103504 (2006) ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Bender, C.M., Boettcher, S.: Dimensional expansion for the Ising limit of quantum field theory. Phys. Rev. D 48, 4919–4923 (1993) ADSCrossRefGoogle Scholar
  62. 62.
    Bender, C.M., Milton, K.A.: Scalar Casimir effect for a D-dimensional sphere. Phys. Rev. D 50, 6547–6555 (1994) ADSCrossRefGoogle Scholar
  63. 63.
    Romeo, A.: Multidimensional extension of a Wentzel-Kramers-Brillouin improvement for spherical quantum billiard zeta functions. J. Math. Phys. 36, 4005 (1995) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Nieto, M.M.: Existence of bound states in continuous 0<D<∞ dimensions. Phys. Lett. A 293, 10–16 (2002) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Gönül, B., Özer, O., Kocak, M., Tutcu, D., Cancelik, Y.: Supersymmetry and the relationship between a class of singular potentials in arbitrary dimensions. J. Phys. A, Math. Gen. 34, 8271 (2001) ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    Gómez, F.J., Sesma, J.: Bound states and resonances in sombrero potentials. Phys. Lett. A 286, 395–400 (2001) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Camblong, H.E., Epele, L.N., Franchiotti, H., Canal García, C.A.: Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590–1593 (2000) ADSCrossRefGoogle Scholar
  68. 68.
    Nouri, S.: Generalized coherent states for the d-dimensional Coulomb problem. Phys. Rev. A 60, 1702–1705 (1999) ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Mustafa, O., Habib Mazharimousavi, S.: Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe. Phys. Lett. A 358, 259–261 (2006) ADSzbMATHCrossRefGoogle Scholar
  70. 70.
    Gönül, B., Koçak, M.: Explicit solutions for N-dimensional Schrödinger equation with position-dependent mass. J. Math. Phys. 47, 102101 (2006) ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002) ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Burgbacher, F., Lämmerzahl, C., Macias, A.: Is there a stable hydrogen atom in higher dimensions? J. Math. Phys. 40, 625 (1999) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Zhao, W.Q.: Relation between dimension and angular momentum for radially symmetric potential in N-dimensional space. Commun. Theor. Phys. 46, 429 (2006) CrossRefGoogle Scholar
  74. 74.
    López-Rosa, S., Manzano, D., Dehesa, J.S.: Complexity of D-dimensional hydrogenic systems in position and momentum spaces. Physica A 388, 3273 (2009) ADSCrossRefGoogle Scholar
  75. 75.
    Quesne, C.: First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. 321, 1221–1239 (2006) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    Kuru, S., Teǧmen, A., Vercin, A.: Intertwined isospectral potentials in an arbitrary dimension. J. Math. Phys. 42(8), 3344 (2001) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Friedberg, R., Lee, T.D., Zhao, W.Q.: Convergent iterative solutions for a Sombrero-shaped potential in any space dimension and arbitrary angular momentum. Ann. Phys. 321(8), 1981–2015 (2006) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Hosoya, H.: Hierarchical structure of the atomic orbital wavefunctions of D-dimensional atom. J. Phys. Chem. 101, 418–421 (1997) Google Scholar
  79. 79.
    Dunn, M., Watson, D.K.: Continuation of the Schrödinger equation for higher angular-momentum states to D dimensions and interdimensional degeneracies. Few-Body Syst. 21, 187–209 (1996) ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    Dunn, M., Watson, D.K.: Continuation of the wave function for higher angular momentum states to D-dimensions: I. The generalized Schwartz expansion. Ann. Phys. 251, 266–318 (1996) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Weyl, H.: The Classical Groups. Princeton University Press, Princeton (1939) Google Scholar
  82. 82.
    Gu, X.Y., Duan, B., Ma, Z.Q.: Quantum three-body system in D dimensions. J. Math. Phys. 43, 2895 (2002) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    Gu, X.Y., Ma, Z.Q., Duan, B.: Interdimensional degeneracies for a quantum three-body system in D dimensions. Phys. Lett. A 307, 55–59 (2003) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Gu, X.Y., Ma, Z.Q., Sun, J.Q.: Interdimensional degeneracies for a quantum N-body system in D dimensions. Europhys. Lett. 64, 586 (2003) ADSCrossRefGoogle Scholar
  85. 85.
    Gu, X.Y., Ma, Z.Q., Sun, J.Q.: Quantum four-body system in D dimensions. J. Math. Phys. 44, 3763 (2003) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    Duan, B., Gu, X.Y., Ma, Z.Q.: Energy levels of P-wave states for a D-dimensional helium atom. Phys. Lett. A 322, 96–104 (2004) ADSzbMATHCrossRefGoogle Scholar
  87. 87.
    Nieto, M.M.: Hydrogen atom and relativistic pi-mesic atom in N-space dimensions. Am. J. Phys. 47, 1067 (1979) ADSCrossRefGoogle Scholar
  88. 88.
    Joseph, A.: Self-adjoint ladder operators (I). Rev. Mod. Phys. 39, 829–837 (1967) ADSzbMATHCrossRefGoogle Scholar
  89. 89.
    Coulson, C.A., Joseph, A.: Self-adjoint ladder operators. II. Rev. Mod. Phys. 39, 838–849 (1967) ADSzbMATHCrossRefGoogle Scholar
  90. 90.
    Joseph, A.: Self-adjoint ladder operators. III. Rev. Mod. Phys. 40, 845–871 (1968) ADSCrossRefGoogle Scholar
  91. 91.
    Gu, X.Y., Ma, Z.Q., Dong, S.H.: Exact solutions to the Dirac equation for a Coulomb potential in D+1 dimensions. Int. J. Mod. Phys. E 11(4), 335–346 (2002) ADSCrossRefGoogle Scholar
  92. 92.
    Bollini, C.G., Giambiagi, J.J.: Generalized Klein-Gordon equations in d dimensions from supersymmetry. Phys. Rev. D 32(12), 3316–3318 (1985) ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Chatterjee, A.: Large-N solution of the Klein-Gordon equation. J. Math. Phys. 27, 2331 (1986) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Roychoudhury, R.K., Varshni, Y.P.: Shifted 1/N expansion and scalar potential in the Dirac equation. J. Phys. A, Math. Gen. 20, L1083 (1987) ADSCrossRefGoogle Scholar
  95. 95.
    Atag, S.: Large-N iterative solution of the Dirac equation. J. Math. Phys. 30, 696 (1989) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Panja, M.M., Dutt, R.: Shifted large-N expansion for the energy levels of relativistic particles. Phys. Rev. A 38, 3937–3943 (1988) ADSCrossRefGoogle Scholar
  97. 97.
    Mustafa, O., Sever, R.: Approach to the shifted 1/N expansion for the Klein-Gordon equation. Phys. Rev. A 43, 5787–5789 (1991) ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    Mustafa, O., Sever, R.: Shifted 1/N expansion for the Klein-Gordon equation with vector and scalar potentials. Phys. Rev. A 44, 4142–4144 (1991) ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    Lin, D.H.: The path integration of a relativistic particle on a D-dimensional sphere. J. Phys. A, Math. Gen. 30, 3201 (1997) ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    Dong, S.H., Gu, X.Y., Ma, Z.Q., Yu, J.: The Klein-Gordon equation with a Coulomb potential in D dimensions. Int. J. Mod. Phys. E 12, 555–565 (2003) ADSCrossRefGoogle Scholar
  101. 101.
    Saad, N., Hall, R.L., Ciftci, H.: The Klein-Gordon equation with the Kratzer potential in d dimensions. Cent. Eur. J. Phys. 6, 717–729 (2008) CrossRefGoogle Scholar
  102. 102.
    Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Exactly complete solutions of the pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47(4), 1039–1057 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    Hall, R.L., Aliyu, M.D.: Comparison theorems for the Klein-Gordon equation in d dimensions. Phys. Rev. A 78, 052115 (2008) ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    Dong, S.H.: The Dirac equation with a Coulomb potential in D dimensions. J. Phys. A, Math. Gen. 36, 4977 (2003) ADSzbMATHCrossRefGoogle Scholar
  105. 105.
    Dong, S.H., Sun, G.H., Popov, D.: Group theory approach to the Dirac equation with a Coulomb plus scalar potential in D+1 dimensions. J. Math. Phys. 44, 4467–4479 (2003) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    Ma, Z.Q., Dong, S.H., Gu, X.Y., Yu, J.: The Klein-Gordon equation with a Coulomb plus scalar potential in D dimensions. Int. J. Mod. Phys. E 13, 597–610 (2004) ADSCrossRefGoogle Scholar
  107. 107.
    Wang, L.Y., Gu, X.Y., Ma, Z.Q., Dong, S.H.: Exact solutions to D-dimensional Schrödinger equation with a pseudoharmonic oscillator. Found. Phys. Lett. 15, 569–576 (2002) MathSciNetCrossRefGoogle Scholar
  108. 108.
    Dong, S.H., Sun, G.H.: The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions. Phys. Scr. 70, 94–97 (2004) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Levinson, N.: On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25(9), 1–29 (1949) MathSciNetGoogle Scholar
  110. 110.
    Ma, Z.Q.: The Levinson theorem. J. Phys. A, Math. Gen. 39(48), R625 (2006) ADSzbMATHCrossRefGoogle Scholar
  111. 111.
    Gu, X.Y., Ma, Z.Q., Dong, S.H.: Levinson theorem for the Dirac equation in D+1 dimensions. Phys. Rev. A 67, 062715 (2003) ADSCrossRefGoogle Scholar
  112. 112.
    Dong, S.H., Ma, Z.Q.: Nonrelativistic Levinson’s theorem in D dimensions. Phys. Rev. A 65, 042717 (2002) ADSCrossRefGoogle Scholar
  113. 113.
    Dong, S.H., Lozada-Cassou, M.: Generalized hypervirial and recurrence relations for radial matrix elements in arbitrary dimensions. Mod. Phys. Lett. A 20, 1533–1540 (2005) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    Dong, S.H., Chen, C.Y., Lozada-Cassou, M.: Generalized hypervirial and Blanchard’s recurrence relations for radial matrix elements. J. Phys. B, At. Mol. Opt. Phys. 38, 2211–2220 (2005) ADSCrossRefGoogle Scholar
  115. 115.
    Lin, D.H.: Friedel theorem for Dirac fermions in D dimensions. Phys. Rev. A 74, 032109 (2006) ADSCrossRefGoogle Scholar
  116. 116.
    Lin, D.H.: Friedel sum rule, Levinson theorem, and the Atiyah-Singer index. Phys. Rev. A 75, 032115 (2007) ADSCrossRefGoogle Scholar
  117. 117.
    Cotǎescu, I.I.: Remarks on the quantum modes of the scalar field on AdSd+1 spacetime. Phys. Rev. D 60, 107504 (1999) ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    Cotǎescu, I.I., Cotǎescu, I.I.: Geometric models of (d+1)-dimensional relativistic rotating oscillators. J. Math. Phys. 41(11), 7290 (2000) ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    Saharian, A.A.: Wightman function and vacuum fluctuations in higher dimensional brane models. Phys. Rev. D 73, 044012 (2006) ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    Kenmoku, M., Ishimoto, K., Nandi, K.K., Shigemoto, K.: Scalar field contribution to rotating black hole entropy. Phys. Rev. D 73, 064004 (2006) ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    Chatillon, N., Macesanu, C., Trodden, M.: Brane cosmology in an arbitrary number of dimensions. Phys. Rev. D 74, 124004 (2006) ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    Saa, A.: N-dimensional Vaidya metric with a cosmological constant in double-null coordinates. Phys. Rev. D 75, 124019 (2007) ADSMathSciNetCrossRefGoogle Scholar
  123. 123.
    Goswami, R., Joshi, P.S.: Spherical gravitational collapse in N dimensions. Phys. Rev. D 76, 084026 (2007) ADSzbMATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 78, 032110 (2008) ADSCrossRefGoogle Scholar
  125. 125.
    Elizalde, E., Odintsov, S.D., Saharian, A.A.: Repulsive Casimir effect from extra dimensions and Robin boundary conditions: from branes to pistons. Phys. Rev. D 79, 065023 (2009) ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    Chow, D.D.K., Cvetič, M., Lü, H., Pope, C.N.: Extremal black hole/CFT correspondence in (gauged) supergravities. Phys. Rev. D 79, 084018 (2009) ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    Rogatko, M., Szyplowska, A.: Massive fermion emission from higher dimensional black holes. Phys. Rev. D 79, 104005 (2009) ADSCrossRefGoogle Scholar
  128. 128.
    Belhai, A., Díaz, P., Seguí, A.: Magnetic and electric black holes in arbitrary dimensions. Phys. Rev. D 80, 044015 (2009) ADSMathSciNetCrossRefGoogle Scholar
  129. 129.
    Guo, Z.Q., Ma, B.Q.: Fermion families from two layer warped extra dimensions. J. High Energy Phys. 0808, 065 (2008) ADSCrossRefGoogle Scholar
  130. 130.
    Konoplya, R.A.: Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach. Phys. Rev. D 68, 024018 (2003) ADSCrossRefGoogle Scholar
  131. 131.
    Melko, R., Mann, R.B.: Studies of the Schroedinger-Newton equations in D dimensions. arXiv:gr-qc/0011004v1 (2000)
  132. 132.
    Kunz, J., Maison, D., Navarro-Léida, F., Viebahn, J.: Rotating Einstein-Maxwell-Dilaton black holes in D dimensions. Phys. Lett. B 639, 95 (2006) ADSMathSciNetCrossRefGoogle Scholar
  133. 133.
    Canfora, F., Giacomini, A., Zerwekh, A.R.: Kaluza-Klein theory in the limit of large number of extra dimensions. Phys. Rev. D 80, 084039 (2009) ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    Kunstatter, G., Lee, H.C., Leivo, H.P.: Gauge invariance of the one-loop effective potential in M d×S 1 Kaluza-Klein theory. Phys. Rev. D 33(4), 1018–1026 (1986) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  135. 135.
    Shiraishi, K.: Multicentered solution for maximally charged dilaton black holes in arbitrary dimensions. J. Math. Phys. 34(4), 1480 (1993) ADSzbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Escuela Superior de Física y Matemáticas, Unidad Profesional Adolfo López MateosInstituto Politécnico NacionalMexico DFMexico

Personalised recommendations