Skip to main content

Bioremediation Potential of Heavy Metal–Resistant Actinobacteria and Maize Plants in Polluted Soil

  • Chapter
  • First Online:
Book cover Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

The screening and characterization of metal resistant microorganisms and plants are important for developing novel bioremediation processes. Considering these, we assessed the potential of copper- and chromium-resistant actinomycetes for bioremediation activity in polluted soils. Also, we assessed the effects of copper concentrations on roots, shoots, and leaf growth of maize and the copper uptake and accumulation by the maize plants. Four chromium resistant Streptomyces strains reduced hexavalent chromium up to 85–95% after 21 days. The novel copper-resistant actinobacterium Amycolatopsis tucumanensis efficiently immobilized copper when inoculated into copper-polluted soil microcosms: bioavailable Cu was 31% lower in soil compared to non-bioaugmented soil. Maize plant was found interesting both as biomarker and bioremediation tool. The bioremediation activity of A. tucumanensis inoculated maize plants grown in polluted soil microcosms correlated well with the values obtained with chemical and physical methods: 20% and 17% lower tissue contents of copper were measured in roots and leaves, respectively. The roots, shoots, and leaves of maize plants also showed a great ability to accumulate copper, which however increased with metal concentration. The metal concentrations were 382 times more in roots, 157 in shoots, and only 16 in leaves, compared to the control (without CuSO4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2005) Isolation and characterization of indigenous copper resistant actinomycete strains. Chem Erde-Geochem 65(S1):145–156

    Article  Google Scholar 

  • Albarracín VH, Avila AL, Amoroso MJ, Abate CM (2008a) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148

    Article  Google Scholar 

  • Albarracín VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008b) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. J Basic Microbiol 48:323–330

    Article  Google Scholar 

  • Albarracín VH, Alonso-Vega P, Trujillo ME, Amoroso MJ, Abate CM (2010a) Amycolatopsis tucumanensis sp. nov., a novel copper resistant actinobacterium isolated from polluted sediments in Tucumán, Argentina. Int J Syst Evol Microbiol 60:397–401

    Article  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2010b) Bioaugmentation of copper polluted soil by Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137

    Article  Google Scholar 

  • Amoroso MJ, Castro GR, Carlino FJ, Romero NC, Hill RT et al (1998) Screening of heavy metal-tolerant actinomycetes isolated from the Salí River. J Gen Appl Microbiol 44:129–132

    Article  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Durán A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Indian Microbiol Biotechnol 26:210–215

    Article  CAS  Google Scholar 

  • Arifuzzaman M, Khatun MR, Rahman H (2010) Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. Afr J Biotechnol 9:4615–4619

    Google Scholar 

  • Atlas RM, Bartha R (2002) Ecología microbiana y microbiología ambiental. Pearson Educación, Madrid

    Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr (VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  Google Scholar 

  • Baldi F, Vaughan AM, Olson GJ (1990) Chromium (VI) resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl Environ Microbiol 56:913–918

    CAS  Google Scholar 

  • Beleza VM, Boaventura RA, Almeida MF (2001) Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environ Sci Technol 35:4379–4383

    Article  CAS  Google Scholar 

  • Benimeli CS, González AJ, Chaile AP, Amoroso MJ (2007) Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol 47:468–473

    Article  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeterior Biodegr 61:233–239

    Article  CAS  Google Scholar 

  • Benimeli CS, Medina A, Navarro CM, Medina RB, Amoroso MJ, Gómez MI (2010) Bioaccumulation of copper by Zea mays: impact on roots, shoots and leaves growth. Water Air Soil Poll 210:365–370

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brown NL, Lloyd JR, Jakeman K, Hobman JL, Bontidean I, Mattiasson B, Csöregi E (1998) Heavy metal resistance genes and proteins in bacteria and their application. Biochem Soc Trans 26:662–664

    CAS  Google Scholar 

  • Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y (2008) Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems? C R Biol 331:859–864

    Article  CAS  Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194

    Article  CAS  Google Scholar 

  • Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    CAS  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • Csillag J, Pártay G, Lukács A, Bujtás K, Németh T (1999) Extraction of soil solution for environmental analysis. Int J Environ Anal Chem 74:305–324

    Article  CAS  Google Scholar 

  • Czakó-Vér K, Batic M, Raspor P, Sipicki M, Pesti M (1999) Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosacchoromyces pombe. FEMS Microbiol Lett 178:109–115

    Article  Google Scholar 

  • Das S, Chandra AL (1990) Chromate reduction in Streptomyces. Experientia 46:731–733

    Article  CAS  Google Scholar 

  • Del Rio M, Font R, Almela C, Velez D, Montoro R, De Haro A (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcollar mine. J Biotechnol 98:125–137

    Article  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluents by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotech 58:416–420

    Article  CAS  Google Scholar 

  • Georgopoulus PG, Roy A, Opiekun RE, Yonone-Lioyand MJ, Lioy PJ (2002) Introduction: copper and man. In: Georgopoulus PG, Roy A, Opiekun RE, Yonone-Lioyand MJ, Lioy PJ (eds.) Environmental dynamics and human exposure to copper, vol 1, Environmental dynamics and human exposure issues3. International Copper Association Ltd, New York, pp 15–26

    Google Scholar 

  • Ghosh M, Spingh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Glass DJ (2000) Economical potential of phytoremediation. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using pants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Gray CW, McLaren RG, Roberts AHC, Condron LM (1999) Cadmium phytoavailability in some New Zealand soils. Aust J Soil Res 37:461–477

    Article  CAS  Google Scholar 

  • Groudev SN, Spasova II, Georgiev PS (2001) In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int J Miner Process 62:301–308

    Article  CAS  Google Scholar 

  • Guo JK, Lin YB, Zhao ML, Sun R, Wang TT, Tang M, Wei GH (2009) Streptomyces plumbiresistens sp. nov., a lead-resistant actinomycete isolated from lead-polluted soil in north-west China. Int J Syst Evol Microbiol 59:1326–1330

    Article  CAS  Google Scholar 

  • Horton RN, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6:5

    Article  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  CAS  Google Scholar 

  • Jézéquel K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Biores Technol 99:690–698

    Article  Google Scholar 

  • Jézéquel K, Perrin J, Lebeau T (2005) Bioaugmentation with a Bacillus sp. to reduce the phytoavailable Cd of an agricultural soil: comparison of free and immobilized microbial inocula. Chemosphere 59:1323–1331

    Article  Google Scholar 

  • Jing Y, Zhen-Li HE, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soil and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde-Geochem 65(S1):7–27

    Article  CAS  Google Scholar 

  • Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Laxman SR, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  CAS  Google Scholar 

  • Lin Q, Shen KL, Zhao HM, Li WH (2008) Growth response of Zea mays L. in pyrene-copper ­co-contaminated soil and the fate of pollutants. J Hazard Mat 150:515–521

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Hou WQ (2001) Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.). J Environ Sci 13:228–232

    CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Gao H (2006) Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 777:1–15

    Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr (VI). Biotechnol Lett 23:683–687

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  CAS  Google Scholar 

  • Meng Q, Zou J, Zou J, Jiang W, Liu D (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (allium sativum L.). Acta Biol Cracoviensia Serie Bot 49:95–101

    Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    Article  CAS  Google Scholar 

  • Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375–1382

    Google Scholar 

  • Nielsen HD, Brownlee C, Coelho SM, Brown M (2003) Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol 160:157–165

    Article  CAS  Google Scholar 

  • Ogboghodo IA, Erebor EB, Osemwota IO, Isitekhale HH (2004) The effects of application of poultry manure to crude oil polluted soils on maize (Zea mays) growth and soil properties. Environ Monit Assess 96:153–161

    Google Scholar 

  • Ouzounidou G, Ciamporova M, Moustakas M (1995) Responses of maize (Zea mays LR) plants to copper stress: IR Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction by Microbacterium ­liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23:61–65

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2007) Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ, Abate CM (2009) Bioremediation of Chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49:285–292

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010a) Chromate reductase activity in Streptomyces sp. MC1. J Gen App Microbiol 56:11–18

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010b) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Poll 24:49–57

    Google Scholar 

  • Rai UN, Tripathi RD, Vajpayee P, Jha V, Ali MB (2002) Bioaccumulation of toxic metals (Cr, Cd, Pb, and Cu) by seeds of Euryale ferox Salisb. (Makhana). Chemosphere 46:267–272

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  Google Scholar 

  • Shen ZG, Zhang FQ, Zhang FS (1998) Toxicity of copper and zinc in seedings of Mung Bean and inducing accumulation of polyamine. J Plant Nutr 21:1153–1162

    Article  CAS  Google Scholar 

  • Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Bioremediation J 6:205–215

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  • Turick CE, Graves C, Appel WA (1998) Bioremediation potential of Cr (VI)-contaminated soil using indigenous microorganisms. Bioremediat J 2:1–6

    Article  CAS  Google Scholar 

  • Ucun H, Aksakal O, Yildiz E (2009) Copper(II) and zinc(II) biosorption on Pinus sylvestris L. J Hazard Mater 161:1040–1045

    Article  CAS  Google Scholar 

  • Vaimajala S, Peyton BM, Apel WA, Peterson JN (2002) Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog 18:290–296

    Article  Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37:1401–1405

    Article  CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  Google Scholar 

  • Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Biores Technol 98:82–88

    Article  CAS  Google Scholar 

  • Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia S. Benimeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Benimeli, C.S., Polti, M.A., Albarracín, V.H., Abate, C.M., Amoroso, M.J. (2011). Bioremediation Potential of Heavy Metal–Resistant Actinobacteria and Maize Plants in Polluted Soil. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_20

Download citation

Publish with us

Policies and ethics