Skip to main content

Use of Crop Plants for Removal of Toxic Metals

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Phytoextraction is an environmentally sound and cost-effective technology for cleaning up soils contaminated with toxic metals. The success of phytoextraction depends on the ability of plants to produce large amounts of biomass. In addition, plants must be tolerant to the target metals and be efficient to translocate metals from roots to the aboveground organs. The effectiveness of phytoextraction also depends upon site and metal species. However, the amount of metals extracted by plants is basically decided by (1) the metal concentration in dry plant tissues and (2) the total biomass of the plant. Certain varieties of high-biomass crops have been found to have the ability to clean up the contaminated soils. The major advantage of using crop plants for phytoextraction is the known growth requirements and well-established cultural practices. One of the most promising, and perhaps widely studied crop plant for the extraction of heavy metals is Indian mustard. Other crops like sweet sorghum, oat, barley, maize, and sunflower are also reported to accumulate toxic metals. As established cultural practices may not elicit the same plant response as observed under non-contaminated conditions, attention must be paid on developing suitable agronomic practices to optimize the growth of plants even under contaminated conditions. Further, a coordinated effort is required to collect and preserve germplasm of accumulator species where molecular engineering can play a key role in developing engineered plants capable of cleaning up contaminated soils and commercializing phytoextraction strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Poll 127:21–26

    Article  CAS  Google Scholar 

  • Anton A, Mathe-Gaspar G (2005) Factors affecting heavy metal uptake; plant selection for phytoremediation. Z Naturforsch 60:244–246

    CAS  Google Scholar 

  • Arthur E, Rice P, Rice P, Anderson T, Baladi S, Henderson K, Coats J (2005) Phytoremediation–an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Babalakova N, Boycheva S, Rocheva S (2005) Effects of short-term treatment with ionic and chelated copper on membrane redox-activity induction in roots of iron – deficient cucumber plants. Gen Appl Plant Physiol 31:143–155

    Google Scholar 

  • Baker A, McGrath S, Reeves R, Smith J (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton

    Google Scholar 

  • Bambara S, Ndakidemi PA (2010) Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Sci Res Ess 5:679–684

    Google Scholar 

  • Behbahaninia A, Mirbagheri SA, Khorasani N, Nouri J, Javid AH (2009) Heavy metal contamination of municipal effluent in soil and plants. J Food Agric Environ 7:852–856

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Rakshin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, p 314

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelation agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Poll 111:293–302

    Article  CAS  Google Scholar 

  • Buxton DR, Anderson IC, Hallam A (1998) Intercropping sweet sorghum into alfalfa and reed canarygrass to increase biomass yield. J Pro Agric 11:481–486

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds.) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28

    Article  CAS  Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZJ (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on phytoremediation of heavy metal contaminated soils. Chemosphere 50:807–811

    Article  CAS  Google Scholar 

  • Ciura J, Poniedzialek M, Sekara A, Je drszczyk E (2005) The possibility of using crops as metal phytoremediation. Pol J Environ Stu 14:17–22

    CAS  Google Scholar 

  • Claus D, Dietze H, Gerth A, Grosser W, Hebner A (2007) Application of agronomic practice improves phytoextraction on a multipolluted site. J Environ Eng Lands Manage 15:208–212

    Google Scholar 

  • Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rizhosphere as influenced by the iron status of tomato (Lycopersicon esculentum L.). Plant Soil 292:63–77

    Article  CAS  Google Scholar 

  • Dahmani-Muller H, van Oort F, Ge lie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Poll 109:231–238

    Article  CAS  Google Scholar 

  • Danika L, LeDuc Norman T (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2007) Metal accumulation in 5 native plants growing on abandoned CU-tailings ponds. Appl Ecol Environ Res 5:27–35

    Google Scholar 

  • De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Poll 111:429–435

    Article  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) Phytoremediation: a novel approach to an old problem. In: Wise DL (ed.) Global environmental biotechnology. Else Sci BV, Amsterdam, pp 563–572

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of Zn by oat (Avena sativa), barley (Hordium vulgare) and Indian mustard (Brassica juncea). Sci Total Environ 32:802–806

    CAS  Google Scholar 

  • Espen L, Dell’Orto M, De Nisi P, Zocchi G (2000) Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in-vivo study. Planta 210:985–992

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaefer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Google Scholar 

  • Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies–Hebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1265

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • He B, Yang X, Wei Y, Ye Z, Ni W (2002) A new lead resistant and accumulating ecotype – Sedum alfredii H. Acta Bot Sinica 44:1365–1370

    CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake and homeostasis in plants. Planta 216:541–551

    CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  CAS  Google Scholar 

  • Hinsinger P, Courchesne F (2007) Mobility and bioavailability of heavy metals and metalloids at soil-root interface. In: Violante A, Huang PM, Gadd GM (eds.) Biophysico-chemical processes of heavy metals and metalloids in soil environments, vol 1. Wiley-IUPAC Series Biophisico-Chemical processes in Environmental Systems, Chichester

    Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Sci Total Environ 31:800–805

    CAS  Google Scholar 

  • Iskandar IK (2000) Environmental restoration of metal contaminated soils. CRC Press, Boca Raton, pp 320

    Book  Google Scholar 

  • Iskandar IK, Kirtham MB (2001) Trace elements in soil; bioavailability, flux and transfer. CRC Press, Boca Raton, pp 304

    Book  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton, pp 432

    Google Scholar 

  • Kamal M, Ghaly AE, Mahamoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Sci Total Environ 34:1778–1783

    CAS  Google Scholar 

  • Ke X, Li PJ, Zhou QX, Zhang Y, Sun TH (2006) Removal of heavy metals from a contaminated soil using tartaric acid. J Environ Sci 18:727–733

    CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Khan AG, Keuk C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Komárek M, TlustoÅ¡ P, Szákova J, Richner W, Brodbeck M, Sennhauser M (2007) The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67:640–651

    Article  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430

    Article  CAS  Google Scholar 

  • Lasa B, Frechilla S, Lamsfus C, Aparicio-Tejo PM (2000) Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 225:167–174

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 5:1–25

    Article  Google Scholar 

  • Lasat MM, Norvell WA, Kochian LV (1997) Potential for phytoextraction of 137Cs from a contaminated soil. Plant Soil 195:99–106

    Article  CAS  Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environl Qual 27:165–169

    Article  CAS  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar spill. Sci Total Environ 307:239–257

    Article  CAS  Google Scholar 

  • Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2004) The effects of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric Eco Environ 107:151–156

    Article  CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. 2nd ed. Academic Press, New York

    Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed.) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 261–288

    Google Scholar 

  • McGrath SP, Zhao F (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Poll 141:115–125

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Engg Biotechnol 78:97–123

    CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghoshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    Article  CAS  Google Scholar 

  • Muchuweti M, Birkett JW, Chinyanga E, Zvauya R, Scrimshaw MD, Lester JN (2006) Heavy metal content of vegetables irrigated with mixture of wastewater and sewage sludge in Zimbabwe: implications for human health. Agric Eco Environ 112:41–48

    Article  CAS  Google Scholar 

  • Nouri J, Alloway BJ, Peterson PJ (2001) Forms of heavy metals in sewage sludge and soil amended with sludge. Pak J Biol Sci 4:1460–1465

    Article  Google Scholar 

  • Nouri J, Mahvi AH, Babaei AA, Ahmadpour E (2006) Regional pattern distribution of groundwater fluoride in the Shush aquifer of Khuzestan county. Fluoride 39:321–325

    CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson B (2006) Critical assessment of chelant enhanced metal phytoextraction. Sci Total Environ 40:5225–5232

    CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicol 13:637–646

    Article  CAS  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DV (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DV (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type B vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  Google Scholar 

  • Oyelola OT, Babatunde AI, Odunlade AK (2009) Phytoremediation of Metals from Contaminated Soil using Lycopercium Esculentum (Tomato) Plant. Int J Pure Appl Sci 3:44–48

    Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and groundwater at hazardous waste sites. Ground Water Issue, United States Environmental Protection Agency, EPA/540/S-01/500

    Google Scholar 

  • Pollard A, Powell K, Harper F, Smith J (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal polluted ecosystems – Hype for commercialization. Russ J Plant Physiol 50:686–701

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metals stress in plants: from biomolecules to ecosystem. Springer-Verlag/Narosa, Heidelberg/New Delhi, p 1462

    Google Scholar 

  • Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology. Elect J Biotechnol 16:285–321

    Google Scholar 

  • Prasad MNV, Strzalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, p 432, ISBN 1-40-200468-0

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals using plants to clean-up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schnoor JL, Light LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Senesi N, Loffrdo E (2005) Metal ion complexation by soil humic substances. In: Tabatabai MA, Sparks DL (eds.) Chemical processes in soils. SSSA, Madison

    Google Scholar 

  • Shah K, Nongkynrih J (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634

    Article  CAS  Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Engg Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Shuman LM (2005) Chemistry of micronutrients in soils. In: Tabatabai MA, Sparks DL (eds.) Chemical processes in soils. SSSA, Madison

    Google Scholar 

  • Smith SR (1996) Agricultural recycling of sewage sludge and the environment. CAB International, Wallingford

    Google Scholar 

  • Solheim C (2008) Identification and characterization of copper responsive proteins in Arabidopsis. Ph.D. thesis, Department of Plant Sciences, University of Saskatchewan

    Google Scholar 

  • Soriano MA, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil 256:253–264

    Article  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hausar L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 40:2753–2758

    Article  CAS  Google Scholar 

  • Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Ind Natl Sci Acad 70:109–130

    CAS  Google Scholar 

  • Thaylakumaran T, Robinson BH, Vogeler I, Scotter DR, Clothier BE, Percivel HJ (2003) Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant Soil 254:415–423

    Article  Google Scholar 

  • Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus. Environ Poll 131:147–154

    Article  CAS  Google Scholar 

  • Unger PW (2001) Alternative and opportunity dry land crops and related soil conditions in the Southern Great Plains. Agron J 93:216–226

    Article  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Poll 126:275–282

    Article  CAS  Google Scholar 

  • Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    Article  CAS  Google Scholar 

  • Wang HQ, Lu SJ, Li H, Yao ZH (2007) EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. J Environ Sci 19:1496–1499

    Article  CAS  Google Scholar 

  • Weggler K, Mclaqhlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. J Environ Qual 33:496

    Article  CAS  Google Scholar 

  • Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T (2010) Effect of fertilizer amendments on phytoremediation of Cd contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mat 176:269–273

    Article  CAS  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • Wu QT, Deng JC, Long XX, Morel JL, Schwartz C (2006) Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. J Environ Sci 18:1113–1118

    Article  CAS  Google Scholar 

  • Xiong ZT, Lu P (2002) Joint enhancement of lead accumulation in Brassica plants by EDTA and ammonium sulfate in sand culture. J Environ Sci 14:216–220

    CAS  Google Scholar 

  • Yang X, Long X, Ye H, He Z, Stofella P, Calvert D (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stofella P (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Ele Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Yobouet YA, Adouby K, Trokourey A, Yao B (2010) Cadmium, Copper, Lead and Zinc speciation in contaminated soils. Int J Engg Sci Technol 2:802–812

    Google Scholar 

  • Zaccheo P, Crippa L, Pasta VDM (2006) Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 283:43–56

    Article  CAS  Google Scholar 

  • Zavoda J, Cutright T, Szpak J, Fallon E (2001) Uptake, selectivity, and inhibition of hydroponic treatment of contaminants. J Environ Engg 127:502

    Article  CAS  Google Scholar 

  • Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS (2005) Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant Soil 276:153–162

    Article  CAS  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Poll 184:235–242

    Article  CAS  Google Scholar 

  • Zhuang P, Shu WS, Li Z, Liao B, Li J, Shao J (2009) Removal of metals by sorghum plants from contaminated land. J Environ Sci 21:1432–1437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. I. U. Aruna Kumara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kumara, K.K.I.U.A. (2011). Use of Crop Plants for Removal of Toxic Metals. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_19

Download citation

Publish with us

Policies and ethics