Skip to main content

Dynamic Optimisation Problems: Different Resolution Methods Regarding Agriculture and Natural Resource Economics

  • Chapter
  • First Online:
Bio-Economic Models applied to Agricultural Systems

Abstract

The need to take into account sustainability in agricultural resource management is now universally admitted. While the term “sustainability” can mean different things to different people, it always involves a consideration of the future. From an economic point of view, sustainability can be defined as an improvement of the performance of a system so as not to exhaust the basic natural resources on which its future performance depends (Pearce et al. 1990). This definition emphasizes the importance of preserving the natural resource base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem of defining individual or social utility functions is extremely difficult and is not dealt with in this paper.

  2. 2.

    In the case where the decision-maker is not considered risk-neutral, other objective functions can be proposed.

  3. 3.

    Obtaining a global maximum cannot always be achieved by using available non-linear programming algorithms, though it can be obtained by adequate formulation of the problem.

  4. 4.

    All the models have been solved by using the GAMS software.

References

  • Apland J, Hauer G (1993) Discrete stochastic programming: concepts, examples and a review of empirical applications. Staff Paper P93-21, Department of Agricultural and Applied Economics, University of Minnesota, Minneapolis

    Google Scholar 

  • Barbier B (1998) Induced innovation and land degradation. Results from a bioeconomic model of a village in West Africa. Agric Econ 19(1–2):15–25

    Article  Google Scholar 

  • Barbier B, Bergeron G (1999) Impact of policy interventions on land management in Honduras: results of a bioeconomic model. Agric Syst 60:1–16

    Article  Google Scholar 

  • Belhouchette H (2004) Evaluation de la durabilité de successions culturales à l’échelle d’un périmètre irrigué en Tunisie: utilisation conjointe d’un modèle de culture (CropSyst), d’un SIG et d’un modèle bio-économique, Thèse de Doctorat en Science du sol. ENSAM, Montpellier, p 155

    Google Scholar 

  • Belhouchette H, Braudeau E, Hachicha M, Donatelli M, Mohtar RH, Wery J (2008) Integrating spatial soil organization data with a regional agricultural management simulation model: a case study in northern Tunisia. Trans ASABE 51:1099–1109

    Google Scholar 

  • Bellman RE (1957) Dynamic programming. Princenton University Press, Princenton

    Google Scholar 

  • Blanco Fonseca M (1999) Economía del agua: Análisis de políticas de modernización de regadíos en España. Tesis Doctoral, Universidad Politécnica de Madrid, Madrid

    Google Scholar 

  • Botía P, Navarro JM, Cerdá A, Martínez V (2005) Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur J Agron 23:243–253

    Google Scholar 

  • Cacho OJ (2000) The role of bioeconomic models in renewable resource management and assessment of solution techniques. Paper presented at the XXIV international conference of agricultural economics (IAAE), Berlin, Agosto 2000

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Google Scholar 

  • Cocks KD (1968) Discrete stochastic programming. Manage Sci 15:72–79

    Google Scholar 

  • Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycling Agroecosyst 64:237–256

    Google Scholar 

  • Haan CT, Barfield BJ, Hayes JC (1994) Design hydrology and sedimentology for small catchments. Academic press, San Diego

    Google Scholar 

  • Hachicha M, Trabelsi A (1993) Evolution sous irrigation d’un sol cultivé dans le périmètre irrigué aux eaux usées épurées de Cébalat-Borj Touil. Résultats de la campagne de mesures de l’été 1992. Direction des Sols, Ministère de l’Agriculture, Tunisie, p 18

    Google Scholar 

  • Hengsdijk H, van Ittersum MK (2003) Formalizing agro-ecological engineering for future-oriented land use studies. Eur J Agron 19:549–562

    Google Scholar 

  • Kennedy JOS (1986) Dynamic programming. Applications to agriculture and natural resources. Elsevier, London

    Google Scholar 

  • Louhichi K, Flichman G, Zekri S (1999) Un modèle bio-économique pour analyser l’impact de la politique de conservation des eaux et du sol. Economie Rurale 252:55–64

    Article  Google Scholar 

  • Mass EW, Hoffman GJ (1977) Crop salt tolerance. Current assessment. J Irrig Drain Div 103:115–134

    Google Scholar 

  • Pearce D, Barbier E, Markandya A (1990) Sustainable development. Edward Elgar Publishing Limited, Aldershot

    Google Scholar 

  • Powlson DS (1988) Measuring and minimising losses of fertilizer 524 nitrogen in arable agriculture. In: Jenkinson DS, Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier Applied Science Publishers, Barking, pp 231–245

    Google Scholar 

  • Rae AN (1971a) Stochastic programming, utility, and sequential decision problems in farm management. Am J Agric Econ 53:448–460

    Article  Google Scholar 

  • Rae AN (1971b) An empirical application and evaluation of discrete stochastic programming in farm management. Am J Agric Econ 53:625–638

    Article  Google Scholar 

  • Rajak D, Manjunatha MV, Rajkumar GR, Hebbara M, Minhas PS (2006) Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol. Agric Water Manage 83:30–36

    Google Scholar 

  • Rhoades JD, Oster JD, Ingvalson RD, Tucker JM, Clark M (1974) Minimizing the salt burdens of irrigation drainage waters. J Environ Qual 3:311–316

    Google Scholar 

  • Ritter WF (1989) Nitrate leaching under irrigation in the United States: a review. J Environ Sci Health 24:349–378

    Google Scholar 

  • Smith RJ, Hancock NH (1986) Leaching requirement of irrigated soils. Agric Water Manage 11:13–22

    Google Scholar 

  • Standiford RB, Howitt RE (1992) Solving empirical bioeconomic models: a rangeland management application. Am J Agric Econ 74(2):421–433

    Article  Google Scholar 

  • Taylor CR (1993) Applications of dynamic programming to agricultural decision problems. Westview, Boulder

    Google Scholar 

  • Tsur Y, Dinar A (1995) Efficiency and equity considerations in pricing and allocating irrigation water. Policy research working paper 1460, The World Bank, Washington, DC

    Google Scholar 

  • Tsur Y, Dinar A (1997) The relative efficiency and implementation costs of alternative methods for pricing irrigation water. World Bank Econ Rev 11(2):243–262

    Google Scholar 

  • Van Genuchten MT, Gupta SK (1993) A reassessment of the crop tolerance response function. J Indian Soc Soil Sci 41:730–737

    Google Scholar 

  • Wilen JE (1985) Bioeconomics of renewable resource use. In: Kneese AV, Sweeney JL (eds) Handbook of natural resources and energy economics, vol 1. North Holland, Amsterdam, pp 61–124

    Google Scholar 

  • Yates CM, Rehman T (1998) A linear programming formulation of the Markovian decision process approach to modelling the dairy replacement problem. Agric Syst 58(2):185–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Blanco-Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blanco-Fonseca, M., Flichman, G., Belhouchette, H. (2011). Dynamic Optimisation Problems: Different Resolution Methods Regarding Agriculture and Natural Resource Economics. In: Flichman, G. (eds) Bio-Economic Models applied to Agricultural Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1902-6_3

Download citation

Publish with us

Policies and ethics