Advertisement

Assessment of the Environmental Impacts of Electric Vehicle Concepts

  • Michael Held
  • Michael Baumann
Conference paper

Abstract

Under the impression of current discussions on depleting resources and environmental questions, the transportation sector is aware of its responsibility and pushes the development of alternative power train concepts. Especially electric vehicle concepts are investigated, since they decrease the dependency from oil based fuels and reduce local noise and emissions during the vehicle operation. By using renewable energies (e.g. wind power), e-mobility can contribute to a significant reduction of the climate balance of transportation. However, there is only little known about the life cycle impacts of e-mobility and respective vehicle components. Based on the method of life cycle assessment (LCA), this paper gives a first quantification on the environmental profile and relevant indicators of e-mobility.

Keywords

Life Cycle Assessment Electric Vehicle Wind Power Global Warming Potential Acidification Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Federal Ministry of Economics and Technology (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. <http://www.bmwi.de/> (accessed 11.10.2010)
  2. 2.
    GaBi 4 (2011) Software and database management system for Life Cycle Engineering. LBP University of Stuttgart in cooperation with PE International, Leinfelden-EchterdingenGoogle Scholar
  3. 3.
    Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2009) Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland, Leitszenario 2009. <http://www.bmu.de> (accessed 10.8.2010)
  4. 4.
    Daimler AG (2010) Mercedes-Benz Cars, Environmental Certificate AClass 2008. <http://sustainability.daimler.com> (accessed 1.8.2010)
  5. 5.
    Daimler AG (2010) Mercedes-Benz Cars, Environmental Certificate BClass 2008. <http://sustainability.daimler.com> (accessed 1.8.2010)
  6. 6.
    Volkswagen AG (2010) The Golf - Environmental commendation, background report 2008. <http://www.volkswagen.com/> (accessed 1.8.2010)
  7. 7.
    Lindegger M (2009) Wirtschaftlichkeit, Anwendungen und Grenzen von effizienten Permanent-Magnet-Motoren, Zusammenfassung und Update. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Energie BFEGoogle Scholar
  8. 8.
    Rommel W (2009) Szenarioanalyse als Methode für strategische Entscheidungen am Beispiel des Ressourcenmanagements, Wirtschaftsphilologentag, PassauGoogle Scholar
  9. 9.
    Pressetext Deutschland (2010) Forschergruppe optimiert Hochleistungsmagnete- Funktionalität von Elektromotoren soll trotz Rohstoffknappheit erhalten bleiben. <http://www.pressetext.de > (accessed: 08.09.2010)
  10. 10.
    Gaines L, Cuenca R (2000) Cost of Lithium-Ion Batteries for Vehicles. Argonne National Laboratory, Center for Transportation ResearchGoogle Scholar
  11. 11.
    International Battery (2011) Lithium Nickel Cobalt Manganese Oxide – Material Safety Data Sheet (MSDS). <http://www.internationalbattery.com > (accessed 01.03.2011)
  12. 12.
    KOKAM (2011) Material Safety Data Sheet – Superior Lithium Polymer Battery (SLPB). <http://www.pse.nl > (accessed 1.03.2011)
  13. 13.
    Dewulf J et al (2009) Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour Conserv Recy doi:10.1016/j.resconrec.2009.08.004Google Scholar
  14. 14.
    Ishihara K et. Al (2002) Environmental burdens of Large Lithium-Ion Batteries Developed in a Japanese National Project. Central Research Institute of Electric Power Industry, JapanGoogle Scholar
  15. 15.
    ADAC Fahrzeugtechnik (2010), Der ADAC-Autotest. http://www.adac.de (accessed 11.10.2010)
  16. 16.
    European Union (2010) Richtlinie 70/220/EWG des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maßnahmen gegen die Verunreinigung der Luft durch Emissionen von Kraftfahrzeugen. <http://eur-lex.europa.eu > (accessed 11.10.2010)
  17. 17.
    Baumann M (2010) Development of a methodical approach for the description of the use phase of electric mobility concepts in life cycle assessment. Fraunhofer Institute for Building Physics, Leinfelden- EchterdingenGoogle Scholar
  18. 18.
    TREMOD (2010) Handbook Emission Factors for Road Transport (HBEFA) version 3.1Google Scholar
  19. 19.
    Wallentowitz H (2007) Strategien zur Elektrifizierung des Antriebstranges: Technologien, Märkte und Implikationen. Vieweg+Teubner Verlag, WiesbadenGoogle Scholar
  20. 20.
    EUCAR (2010) The Electrification of the Vehicle and the Urban Transport System 2009. <http://www.acea.be > (accessed 11.10.2010)
  21. 21.
    Barenschee E (2010) Wie baut man Li-Ionen-batterien? Welche Herausforderungen sind noch zu lösen? Evonik Industries, <http://media.nmm.de > (accessed 11.10.2010)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Fraunhofer Institute for Building PhysicsLeinfelden-EchterdingenGermany

Personalised recommendations