Advertisement

A Method of Prospective Technological Assessment of Nanotechnological Techniques

  • Michael Steinfeldt
Conference paper

Abstract

Nanotechnology is frequently described as an enabling technology and a fundamental innovation, i.e. it is expected to lead to numerous innovative developments in the most diverse fields of technology and areas of application in society and the marketplace. Nanotechnologies are regarded as a substantial element for environmental reliefs. As a result the following questions arise: How large are the possible relief effects on the environment by nanotechnological techniques? This contribution describe a new method of prospective technological assessment of nanotechnological processes and gives a current overview of existing studies of published LCAs of the manufacture of nanoparticles and nanocomponents.

Keywords

Life Cycle Assessment Global Warming Potential Life Cycle Inventory Carbon Nanofiber Catalytic Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinfeldt M, von Gleich A, Petschow U, Haum R (2007) Nanotechnologies, Hazards and Resource Efficiency. Springer, HeidelbergGoogle Scholar
  2. 2.
    Sengül H, Theis TL, Ghosh S (2008) Toward Sustainable Nanoproducts: An Overview of Nanomanufacturing Methods. J Ind Ecol 12(3):329–359.CrossRefGoogle Scholar
  3. 3.
    Meyer DE, Curran MA, Gonzalez M (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263.CrossRefGoogle Scholar
  4. 4.
    Osterwalder N, Capello C, Hungerbühler K, Stark WJ (2006) Energy consumption during nanoparticle production: How economic is dry synthesis? J. Nanopart Res 8(1):1–9.CrossRefGoogle Scholar
  5. 5.
    Roes A, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and Cost Assessment of a Polypropylene Nanocomposite. J Polym Environ 15(3):212–226.CrossRefGoogle Scholar
  6. 6.
    Eckelman MJ, Zimmerman JB, Paul T, Anastas PT (2008) Toward Green Nano: E-factor Analysis of Several Nanomaterial Syntheses. J Ind Ecol 12(3):316–328.CrossRefGoogle Scholar
  7. 7.
    Kushnir D, Sandén BA (2008) Energy Requirements of Carbon Nanoparticle Production. J Ind Ecol 12(3):360–375.CrossRefGoogle Scholar
  8. 8.
    Singh A, Lou HH, Pike RW, Agboola A, Li X, Hopper JR, Yaws CL (2008) Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes. Am J Environ Sci 4(5):522–534.CrossRefGoogle Scholar
  9. 9.
    Healy. ML, Dahlben LJ, Isaacs JA (2008) Environmental Assessment of Single-Walled Carbon Nanotube Processes. J Ind Ecol 12(3):376–393.CrossRefGoogle Scholar
  10. 10.
    Khanna V, Bakshi BR, Lee J, Carbon Nanofiber Production: Life Cycle Energy Consumption and Environmental Impact. J Ind Ecol 12(3):394–410Google Scholar
  11. 11.
    Krishnan. N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A. Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing. Environ Sci Technol 42(8):3069–3075.Google Scholar
  12. 12.
    Steinfeldt M,, von Gleich A, Petschow U, Pade C, Sprenger R-U (2010) Entlastungseffekte für die Umwelt durch nanotechnische Verfahren und Produkte (Environmental Relief Effects through Nanotechnological Processes and Products). UBA-Texte 33/2010, Dessau <http://www.umweltdaten.de/publikationen/fpdf-l/3777.pdf> (accessed 05.04.2011)
  13. 13.
    Steinfeldt M, von Gleich A, Henkle J, Endo M, Morimoto S, Momosaki E (2010) Environmental relief effects of nanotechnologies – factor 10 or only incremental increase of efficiency. Proceeding of the 9th International Conference on EcoBalance Towards & Beyond 2020, Tokio, JapanGoogle Scholar
  14. 14.
    Kück A, Steinfeldt M, Prenzel K, Swiderek P, von Gleich A, Thöming J (2010) Green nanoparticle production using micro reactor. J Phys, Conferences Series NANOSAFE 2010, Grenoble, (forthcoming)Google Scholar
  15. 15.
    Hischier R (2007) Carbon Black. In: Althaus HJ, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A Life cycle inventories of chemicals. Ecoinvent report No 8. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  16. 16.
    Althaus HJ (2009) Aluminium. In: Althaus H, Blaser S, Classen M, Emmenegger MF, JungbluthN, Scharnhorst W, Tuchschmid M Life cycle inventories of metals. Ecoinvent report No 10, part I. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  17. 17.
    Hischier R (2007) Life cycle inventories of packaging and graphical papers. Ecoinvent report No 11, part II. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  18. 18.
    Hischier R, Lehmann M (2007) Electronic components. In: Hischier R, Classen M, Lehmann M, Scharnhorst W Life Cycle Inventories of Electric and Electronic Equipment: Production, Use and Disposal. Ecoinvent report No 18, part I, Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  19. 19.
    Classen M, Althaus HJ (2009) Platinum group metals (PGM). In: Althaus H, Blaser S, Classen M, Emmenegger MF, JungbluthN, Scharnhorst W, Tuchschmid M (2009) Life cycle inventories of metals. Ecoinvent report No 10, part V, DübendorfGoogle Scholar
  20. 20.
    Classen M, Tuchschmid M, Emmenegger MF, Scharnhorst W (2009) Gold and Silver. In: Althaus H, Blaser S, Classen M, Emmenegger MF, Jungbluth N, Scharnhorst W, Tuchschmid M Life cycle inventories of metals, Ecoinvent report No 10, part IX. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  21. 21.
    Primas A (2007) Zirconium oxide production from mineral sands. In: Althaus HJ, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A Life cycle inventories of chemicals. Ecoinvent report No 8. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  22. 22.
    Chudacoff M (2007) Titanium dioxide. In: Althaus HJ, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A Life cycle inventories of chemicals. Ecoinvent report No 8. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Universität BremenBremenGermany

Personalised recommendations