Advertisement

Anoxia pp 131-143 | Cite as

Magnetotactic Protists at the Oxic–Anoxic Transition Zones of Coastal Aquatic Environments

  • Dennis A. Bazylinski
  • Christopher T. Lefèvre
  • Richard B. Frankel
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)

Abstract

Magnetotactic protists of different types have been sporadically observed in a number of aquatic habitats, mainly at the oxic–anoxic transition zone of chemically stratified coastal environments and the anoxic zone. Cells of those examined contained magnetite (Fe3O4) crystals whose size and shape are close to those of magnetotactic bacteria. While some appear to biomineralize their magnetic crystals, others clearly ingest magnetotactic bacteria, with some egesting indigestible remains of these prokaryotes. Magnetotactic protists show a great potential for iron cycling in chemically stratified environments. Many questions remain to be answered regarding these interesting microorganisms.

Keywords

Magnetic Field Line Magnetic Mineral Magnetic Dipole Moment Anoxic Zone Magnetotactic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to K.J. Edwards, S.S. Epstein, M. Pósfai, and S.L. Simmons for their collaboration in this work. DAB and CTL are supported by U.S. National Science Foundation grant EAR-0920718.

References

  1. Barbeau K, Moffett JW, Caron DA, Croot PL, Erdner DL (1996) Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature 380:61–64CrossRefGoogle Scholar
  2. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230PubMedCrossRefGoogle Scholar
  3. Bazylinski DA, Schlezinger DR, Howes BL, Frankel RB, Epstein SS (2000) Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond. Chem Geol 169:319–328CrossRefGoogle Scholar
  4. Donaghay PL, Rines HM, Sieburth JM (1992) Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch Hydrobiol Beih Ergeb Limnol 36:97–108Google Scholar
  5. Fenchel T (1969) The ecology of marine microbenthos: IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182Google Scholar
  6. Fenchel T, Finlay BJ (1984) Geotaxis in the ciliated protozoan, Loxodes. J Exp Biol 110:17–33Google Scholar
  7. Fenchel T, Finlay BJ, Gianni A (1989) Microaerophily in ciliates: responses of an Euplotes species (Hypotrichida) to oxygen tension. Arch Protistenkd 137:317–330Google Scholar
  8. Finlay BJ, Hetherington NB, Davison W (1983) Active biological participation in lacustrine barium chemistry. Geochim Cosmochim Acta 47:1325–1329CrossRefGoogle Scholar
  9. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000PubMedCrossRefGoogle Scholar
  10. Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245PubMedCrossRefGoogle Scholar
  11. Martins JL, Silveira TS, Abreu F, Silva KT, da Silva-Neto ID, Lins U (2007) Grazing protozoa and magnetosome dissolution in magnetotactic bacteria. Environ Microbiol 9:2775–2781PubMedCrossRefGoogle Scholar
  12. Moskowitz BM, Bazylinski DA, Egli R, Frankel RB, Edwards KJ (2008) Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal salt pond (Salt Pond, MA, USA). Geophys J Int 174:75–92CrossRefGoogle Scholar
  13. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546PubMedCrossRefGoogle Scholar
  14. Ramoino P, Beltrame F, Diaspro A, Fato M (1996) Time-variant analysis of organelle and vesicle movement during phagocytosis in Paramecium primaurelia by means of fluorescence confocal laser scanning microscopy. Microsc Res Tech 35:377–384PubMedCrossRefGoogle Scholar
  15. Rieder N, Ott HA, Pfundstein P, Schoch R (1982) X-ray microanalysis of the mineral contents of some protozoa. J Protozool 29:15–18Google Scholar
  16. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114PubMedCrossRefGoogle Scholar
  17. Simmons SL, Edwards KJ (2007) Geobiology of magnetotactic bacteria. In: Schüler D (ed) ­Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 77–102CrossRefGoogle Scholar
  18. Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM (1985) Magnetite and magnetotaxis in algae. Biophys J 50:375–378Google Scholar
  19. Wakeham SG, Howes BL, Dacey JWH (1984) Dimethyl sulphide in a stratified coastal salt pond. Nature 310:770–772CrossRefGoogle Scholar
  20. Wakeham SG, Howes BL, Dacey JWH, Schwarzenbach RP, Zeyer J (1987) Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim Cosmochim Acta 51:1675–1684CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  • Dennis A. Bazylinski
    • 1
  • Christopher T. Lefèvre
    • 1
  • Richard B. Frankel
    • 2
  1. 1.School of Life SciencesUniversity of Nevada at Las VegasLas VegasUSA
  2. 2.Department of PhysicsCalifornia Polytechnic State UniversitySan Luis ObispoUSA

Personalised recommendations