Anoxia pp 83-112 | Cite as

Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)

Abstract

The adaptation of unicellular eukaryotes to life under permanently anaerobic conditions involves substantial changes in mitochondrial morphology and metabolism. The analysis of 16 independently arisen adaptations reveals that losses of genes of the organellar genome initiate a pathway that eventually leads to the complete loss of the genome. Simultaneously, the mitochondrial electron transport chain undergoes changes that lastly lead to a complete loss of the subunits and the loss of the ability to generate ATP by using a proton gradient. In addition, many genes found in textbook mitochondria become lost, leading to a rainbow of mitochondrion-derived organelles with characteristic proteomes. These derived organelles are named hydrogenosomes if they generate hydrogen and ATP, and mitosomes if they produce neither of the two. In essence, these organelles are mitochondria that adapted to life under anaerobic conditions by reductive evolutionary tinkering.

Keywords

Mitochondrial Genome Complete Mitochondrial Genome Pyruvate Formate Lyase Organellar Genome Mitochondrial Target Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedCrossRefGoogle Scholar
  2. Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JH (1998) A hydrogenosome with a genome. Nature 396:527–528PubMedCrossRefGoogle Scholar
  3. Akhmanova, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32:1103–1114Google Scholar
  4. Ali V, Shigeta Y, Tokumoto U, Takahash Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279:16863–16874Google Scholar
  5. Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358:19–37, discussion 37–18PubMedCrossRefGoogle Scholar
  6. Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JM Jr, Ragan MA, Hirt RP, Roger AJ (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51PubMedCrossRefGoogle Scholar
  7. Barbera MJ, Ruiz-Trillo I, Leigh J, Hug LA, Roger AJ (2007) The diversity of mitochondrion-related organelles amongst eukaryotic microbes. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin/Heidelberg, pp 239–275CrossRefGoogle Scholar
  8. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden S, van Hellemond J, Ricard G, Huynen M, Tielens A, Hackstein J (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399PubMedCrossRefGoogle Scholar
  9. Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79PubMedCrossRefGoogle Scholar
  10. Broers CAM (1992) Anaerobic psalteriomonad amoeboflagellates. Thesis, Catholic University Nijmegen, NijmegenGoogle Scholar
  11. Broers CAM, Stumm CK, Vogels GD, Brugerolle G (1990) Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from fresh-water anaerobic sediments. Eur J Protistol 25:369–380Google Scholar
  12. Brunk CF, Lee LC, Tran AB, Li J (2003) Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res 31:1673–1682PubMedCrossRefGoogle Scholar
  13. Burger G, Lang BF (2003) Parallels in genome evolution in mitochondria and bacterial symbionts. IUBMB Life 55:205–212PubMedCrossRefGoogle Scholar
  14. Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN, Lang BF, Gray MW (2000) Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 297:365–380PubMedCrossRefGoogle Scholar
  15. Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006). Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci USA 103:15916–15920Google Scholar
  16. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212PubMedCrossRefGoogle Scholar
  17. Cavalier-Smith T (1987) The origin of eukaryotic and archaebacterial cells. Ann N Y Acad Sci 503:17–54PubMedCrossRefGoogle Scholar
  18. Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ER, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742Google Scholar
  19. Claros MG, Perea J, Shu Y, Samatey FA, Popot JL, Jacq C (1995) Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228:762–771PubMedCrossRefGoogle Scholar
  20. Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate:NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53:225–231Google Scholar
  21. Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402PubMedCrossRefGoogle Scholar
  22. Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T (2009) The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26:1941–1947PubMedCrossRefGoogle Scholar
  23. Daley DO, Clifton R, Whelan J (2002) Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci USA 99:10510–10515PubMedCrossRefGoogle Scholar
  24. Danovaro R, Dell’anno A, Pusceddu A, Gambi C, Heiner I, Mobjerg Kristensen R (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30PubMedCrossRefGoogle Scholar
  25. de Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009a) The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 9:287PubMedCrossRefGoogle Scholar
  26. de Graaf RM, van Alen TA, Dutilh BE, Kuiper JW, van Zoggel HJ, Huynh MB, Görtz HD, Huynen MA, Hackstein JH (2009b) The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus. BMC Genomics 10:514PubMedCrossRefGoogle Scholar
  27. de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JW, van der Staay GW, Tielens AGM, Huynen MA, Hackstein JHP (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol. doi 10.1093/molbev/msr059Google Scholar
  28. Dolezal P, Smid O, Rada P, Zubacova Z, Bursac D, Sutak R, Nebesarova J, Lithgow T, Tachezy J (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA 102:10924–10929Google Scholar
  29. Dolezal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, Sedinova M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T (2010) The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6:e1000812Google Scholar
  30. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286PubMedCrossRefGoogle Scholar
  31. Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D (1991a) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol 57:1400–1407PubMedGoogle Scholar
  32. Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D (1991b) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol 137:1409–1417PubMedGoogle Scholar
  33. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedCrossRefGoogle Scholar
  34. Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395Google Scholar
  35. Feagin JE (1994) The extrachromosomal DNAs of apicomplexan parasites. Annu Rev Microbiol 48:81–104PubMedCrossRefGoogle Scholar
  36. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642PubMedCrossRefGoogle Scholar
  37. Funes S, Davidson E, Claros MG, van Lis R, Perez-Martinez X, Vazquez-Acevedo M, King MP, Gonzalez-Halphen D (2002) The typically mitochondrial DNA-encoded ATP6 subunit of F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 277:6051–6058PubMedCrossRefGoogle Scholar
  38. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91PubMedCrossRefGoogle Scholar
  39. Gill EE, Diaz-Trivino S, Barbera MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66:1306–1320PubMedCrossRefGoogle Scholar
  40. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452:624–628Google Scholar
  41. Goosen NK, van der Drift C, Stumm C, Vogels GD (1990) End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett 69:171–175CrossRefGoogle Scholar
  42. Hackstein JHP, Tielens AGM (2010) Hydrogenosomes. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archea. Springer, HeidelbergGoogle Scholar
  43. Hackstein JHP, Tjaden J, Huynen MA (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245PubMedCrossRefGoogle Scholar
  44. Hackstein JHP, de Graaf RM, van Hellemond JJ, Tielens AG (2008) Hydrogenosomes of anaerobic ciliates. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin/Heidelberg, pp 97–112CrossRefGoogle Scholar
  45. Hampl V, Silberman JD, Stechmann A, Diaz-Trivino S, Johnson PJ, Roger AJ (2008) Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate‘ flagellate Trimastix pyriformis. PLoS One 3:e1383PubMedCrossRefGoogle Scholar
  46. Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21:68–74PubMedCrossRefGoogle Scholar
  47. Henze K (2007) The proteome of T.vaginalis hydrogenosomes. In: Tachezy J (ed) Hydrogensomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin/Heidelberg, pp 163–178Google Scholar
  48. Hjort KA, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:713–727Google Scholar
  49. Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709PubMedGoogle Scholar
  50. Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622PubMedCrossRefGoogle Scholar
  51. Hrdý I, Tachezy J, Müller M (2007) Metabolism of trichomonads hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin/Heidelberg, pp 113–145Google Scholar
  52. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453PubMedCrossRefGoogle Scholar
  53. Keithly J (2008) The mitochondrion related organelle of Cryptosporidium parvum. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin/Heidelberg, pp 231–253Google Scholar
  54. Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, Simpson AG, Flegr J (2008) Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol 8:205PubMedCrossRefGoogle Scholar
  55. LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519–3530Google Scholar
  56. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497PubMedCrossRefGoogle Scholar
  57. Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778PubMedCrossRefGoogle Scholar
  58. Lantsman Y, Tan KS, Morada M, Yarlett N (2008) Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology 154:2757–2766PubMedCrossRefGoogle Scholar
  59. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728PubMedGoogle Scholar
  60. Lindmark DG, Muller M, Shio H (1975) Hydrogenosomes in trichomonas-vaginalis. J Parasitol 61:552–554CrossRefGoogle Scholar
  61. Lloyd D, Ralphs JR, Harris JC (2002) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148:727–733PubMedGoogle Scholar
  62. Loftus BJ, Hall N (2005) Entamoeba: still more to be learned from the genome. Trends Parasitol 21:453Google Scholar
  63. Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455PubMedCrossRefGoogle Scholar
  64. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205PubMedGoogle Scholar
  65. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2010) Bacterial-type oxygen detoxification and iron–sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12(3):331–342PubMedCrossRefGoogle Scholar
  66. Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18PubMedCrossRefGoogle Scholar
  67. Marvin-Sikkema F, Gomes T, Grivet J, Gottschall J, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp L2. Arch of Microbiol 160:388–396Google Scholar
  68. Meisinger C, Sickmann A, Pfanner N (2008) The mitochondrial proteome: from inventory to function. Cell 134:22–24Google Scholar
  69. Moradian MM, Beglaryan D, Skozylas JM, Kerikorian V (2007) Complete mitochondrial genome sequence of three Tetrahymena species reveals mutation hot spots and accelerated nonsynonymous substitutions in Ymf genes. PLoS One 2(7):e650PubMedCrossRefGoogle Scholar
  70. Morin GB, Cech TR (1988a) Telomeric repeats of Tetrahymena malaccensis mitochondrial DNA: a multimodal distribution that fluctuates erratically during growth. Mol Cell Biol 8:4450–4458PubMedGoogle Scholar
  71. Morin GB, Cech TR (1988b) Mitochondrial telomeres: surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell 52:367–374PubMedCrossRefGoogle Scholar
  72. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889PubMedGoogle Scholar
  73. Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protists – a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Kluwer, Dordrecht, pp 109–132Google Scholar
  74. Nash EA, Nisbet RE, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335PubMedCrossRefGoogle Scholar
  75. Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J (2003) Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull 204:1–9PubMedCrossRefGoogle Scholar
  76. Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L (1998) Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184–188PubMedCrossRefGoogle Scholar
  77. Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF (2008) RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451:153–158PubMedCrossRefGoogle Scholar
  78. Palmer JD (1997) Organelle genomes: going, going, gone! Science 275:790–791PubMedCrossRefGoogle Scholar
  79. Paquin B, Lang BF (1996) The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol 255:688–701PubMedCrossRefGoogle Scholar
  80. Park JS, Kolisko M, Heiss AA, Simpson AG (2009) Light microscopic observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n. g., n. sp., a deep-branching relative of diplomonads. J Eukaryot Microbiol 56:373–384PubMedCrossRefGoogle Scholar
  81. Perez-Brocal V, Clark CG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol 25:2475–2482PubMedCrossRefGoogle Scholar
  82. Perez-Martinez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, King MP, Gonzalez-Halphen D (2000) Unusual location of a mitochondrial gene. Subunit III of cytochrome C oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem 275:30144–30152PubMedCrossRefGoogle Scholar
  83. Perez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP, Gonzalez-Halphen D (2001) Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276:11302–11309PubMedCrossRefGoogle Scholar
  84. Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58:233–267PubMedGoogle Scholar
  85. Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ (1990) Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res 18:173–180PubMedCrossRefGoogle Scholar
  86. Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18Google Scholar
  87. Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563Google Scholar
  88. Ricard G (2008) Evolution and genome structure of anaerobic ciliates. Center for Molecular and Biomolecular informatics. Thesis, Radboud University, NijmegenGoogle Scholar
  89. Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, Newbold CJ, Nsabimana E, Takenaka A, Thomas NA, Ushida K, Hackstein JHP, Huynen MA (2006) Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22Google Scholar
  90. Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147Google Scholar
  91. Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R (2004) Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int J Parasitol 34:297–308Google Scholar
  92. Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720Google Scholar
  93. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274PubMedCrossRefGoogle Scholar
  94. Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18:580–585PubMedCrossRefGoogle Scholar
  95. Strüder-Kypke MC, Wright AD, Foissner W, Chatzinotas A, Lynn DH (2006) Molecular phylogeny of litostome ciliates (Ciliophora, Litostomatea) with emphasis on free-living haptorian genera. Protist 157:261–278PubMedCrossRefGoogle Scholar
  96. Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572PubMedCrossRefGoogle Scholar
  97. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021PubMedCrossRefGoogle Scholar
  98. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176Google Scholar
  99. Trinci A, Davies D, Gull K, Lawrence M, Nielsen B, Rickers A, Theodorou M (1994) Anaerobic fungi and herbivorous animals. Mycol Res 98:129–152Google Scholar
  100. Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453:553–556Google Scholar
  101. van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231Google Scholar
  102. van der Giezen M, Cox S, Tovar J (2004) The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4:7Google Scholar
  103. van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150Google Scholar
  104. van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ER (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. Embo J 21:572–579Google Scholar
  105. van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530Google Scholar
  106. van Grinsven KW, Rosnowsky S, van Weelden SW, Putz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AG, Henze K (2008) Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 283:1411–1418PubMedCrossRefGoogle Scholar
  107. van Hoek AH, Sprakel VS, van Alen TA, Theuvenet AP, Vogels GD, Hackstein JH (1999) Voltage-dependent reversal of anodic galvanotaxis in Nyctotherus ovalis. J Eukaryot Microbiol 46:427–433PubMedCrossRefGoogle Scholar
  108. van Hoek AH, Akhmanova AS, Huynen MA, Hackstein JH (2000) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17:202–206PubMedGoogle Scholar
  109. Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454Google Scholar
  110. Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen MA, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284:103–112Google Scholar
  111. Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245PubMedCrossRefGoogle Scholar
  112. Wawrzyniak I, Roussel M, Diogon M, Couloux A, Texier C, Tan KS, Vivares CP, Delbac F, Wincker P, El Alaoui H (2008) Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol 38:1377–1382PubMedCrossRefGoogle Scholar
  113. Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869Google Scholar
  114. Williams BA, Keeling PJ (2005) Microsporidian mitochondrial proteins: expression in Antonospora locustae spores and identification of genes coding for two further proteins. J Eukaryot Microbiol 52:271–276PubMedCrossRefGoogle Scholar
  115. Williams BA, Haferkamp I, Keeling PJ (2008) An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J Mol Biol 375:1249–1257PubMedCrossRefGoogle Scholar
  116. Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200:365–372PubMedGoogle Scholar
  117. Yarlett N, Lloyd D, Williams AG (1982) Respiration of the rumen ciliate Dasytricha ruminantium Schuberg. Biochem J 206:259–266PubMedGoogle Scholar
  118. Yarlett N, Lloyd D, Williams AG (1985) Butyrate formation from glucose by the rumen protozoon Dasytricha ruminantium. Biochem J 228:187–192PubMedGoogle Scholar
  119. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739Google Scholar
  120. Yousuf MA, Mi-ichi F, Nakada-Tsukui K, Nozaki T (2010) Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. Eukaryot Cell 9:926–933Google Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  1. 1.Department of Evolutionary Microbiology, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations