Anoxia pp 615-630 | Cite as

The Relevance of Anoxic and Agglutinated Benthic Foraminifera to the Possible Archean Evolution of Eukaryotes

  • Wladyslaw Altermann
  • Alexander Volker Altenbach
  • Carola Leiter
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)

Abstract

The history of the Earth, its lithosphere, hydrosphere, atmosphere, and biosphere is closely interlinked in many disciplines (geology, paleoclimatology, paleoceanography, and geobiology or paleobiology). This relationship is particularly complicated for the Precambrian constituting c. 90% of this history. When stepping backward in time, the history is increasingly obliterated by alteration processes connected to plate tectonics, metamorphism, diagenesis, biodegradation and taphonomy, and simply by increasing coverage by younger rocks. The biggest problems in deciphering this history are imposed by the often diametrically controversial interpretation of lithological, biological, and geochemical signatures preserved from these times, but especially from the Precambrian far past, the Archean (4.6–2.5 billion years ago). The most intriguing problems in our understanding of the earliest c. 60% of the Earth’s history are: the geochemistry of the primordial oceans and atmosphere, their pH and oxidation state, and mineralization processes, e.g., the origin of banded iron formations; periods of global glaciations (Snowball Earth scenarios); and the appearance and early evolution of life, including photosynthesis, cyanobacteria, prokaryotes, and eukaryotes. A comprehensive overview of these problems and the discussed solutions can be gained from the series of state-of-the-art articles treating the entire Precambrian period, in Eriksson et al. (2004). Moreover, an all-embracing view on the close relationships of mineralogy and biology and the general evolution of the Earth and the lithosphere and biosphere can be detracted from Hazen et al. (2008). The present contribution is partly based on these discussions, perhaps not familiar to a wide audience of microbiologists.

Keywords

Anaerobic Ammonia Oxidation Black Shale Benthic Foraminifera Lower Cambrian Banded Iron Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

 Acknowledgments

We are grateful to Jochen Brocks and two anonymous reviewers for comments and critical assessment of an earlier version of our manuscript. Funding by the Deutsche Forschungsgemeinschaft (Al 331/7 and Al 331/14) for our research on modern Foraminifera in anoxic environments is gratefully acknowledged. WA is grateful for support by the University of Pretoria (RDP) and by the NRF.

 References

  1. Altenbach AV, Struck U (2006) Some remarks on Namibia’s shelf environments, and a possible teleconnection to the hinterland. In: Leser H (ed.) The changing culture and nature of Namibia: case studies. The sixth Namibia workshop Basel 2005. In Honour of Dr. h.c. Carl Schlettwein (1925–2005), Basler Afrika Bibliographien, Basel, pp 109–124Google Scholar
  2. Altenbach AV, Struck U, Graml M, Emeis K (2002) The genus Virgulinella in oxygen deficient, oligotrophic, or polluted sediments. In: Revets SA (ed.) FORAMS 2002 international symposium on foraminifera, volume of abstracts, The University of Western Australia 1:20Google Scholar
  3. Altermann W (2004) Evolving life and its effect on Precambrian sedimentation. In: Eriksson PG, Altermann W, Nelson DR, Mueller W, Catuneanu O (eds.) The Precambrian Earth: Tempos and Events, vol 12, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 539–545Google Scholar
  4. Altermann W (2007) The early Earth’s record of enigmatic cyanobacteria and supposed extremophilic bacteria at 3.8 to 2.5 Ga. In: Seckbach J (ed.) Algae and cyanobacteria in extreme environments, vol 11, Cellular origin, life in extreme habitats and astrobiology (COLE). Springer, Dordrecht, pp 759–778CrossRefGoogle Scholar
  5. Altermann W (2009) Introduction to from fossils to astrobiology – a roadmap to a Fata Morgana? In: Seckbach J, Walsh M (eds.) From fossils to astrobiology (COLE), vol 12. Springer, Dordrecht, pp Xv–xxviiGoogle Scholar
  6. Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90PubMedCrossRefGoogle Scholar
  7. Altermann W, Kazmierczak J, Oren A, Wright D (2006) Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history. Geobiology 4:147–166CrossRefGoogle Scholar
  8. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the Great Oxidation Event? Science 317:1903–1906PubMedCrossRefGoogle Scholar
  9. Baturin GN (2002) Nodular fraction of phosphatic sand from the Namibia Shelf. Lithol Miner Resour 37:1–17CrossRefGoogle Scholar
  10. Bernhard JM (2002) The anoxic Carioca Basin has benthic foraminifers: preliminary observations on the ecology and ultrastructure of Virgulinella fragilis. In: Revets SA (ed.) FORAMS 2002 international symposium on foraminifera, volume of abstracts, The University of Western Australia 1:24–25Google Scholar
  11. Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299:861PubMedCrossRefGoogle Scholar
  12. Bernhard JM (2006) Foraminifera living in sulfidic environments: biology, ecology, and geological implications. FORAMS 2006, international symposium on foraminifera. Natal, Brasil. Abstracts, [URL: http://www.fgel.uerj.br/forams2006/joan.htm]
  13. Bernhard JM, Bowser SS (2008) Peroxisome proliferation in foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure? J Eukaryot Microbiol 55:135–144PubMedCrossRefGoogle Scholar
  14. Bernhard JM, Reimers CE (1991) Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin. Biogeochemistry 15:127–149CrossRefGoogle Scholar
  15. Bernhard JM, Visscher PT, Boewser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr 48:813–828CrossRefGoogle Scholar
  16. Bernhard JM, Habura A, Bowser SS (2006) An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res 111:G03002. doi:10.1029/2005JG000158CrossRefGoogle Scholar
  17. Borgonie G (2011) Worms from Hell: Nematoda from the terrestrial deep subsurface of South Africa. New Horizons for international investigations into carbon cycling in the deep crustal biosphere, Abstract Vol. University of the Free State, Bloemfontein, SA. O6Google Scholar
  18. Brocks JJ, Banfield J (2009) Unravelling ancient microbial history with community petrogenomics and lipid geochemistry. Nat Rev Microbiol 7:601–609PubMedCrossRefGoogle Scholar
  19. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefGoogle Scholar
  20. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:289–4319CrossRefGoogle Scholar
  21. Brocks JJ, Grosjean E, Logan GA (2008) Assessing biomarker syngeneity using branched alkanes with quarternary carbon (BAQCs) and other plastic contaminants. Geochim Cosmochim Acta 72:871–888CrossRefGoogle Scholar
  22. Brüchert V, Jorgensen BB, Neumann K, Riechmann D, Schloesser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim et Cosmochim Acta 67:4505–4518CrossRefGoogle Scholar
  23. Buick R (2010) Ancient acritarchs. Nature 463:885–886PubMedCrossRefGoogle Scholar
  24. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  25. Chapman P, Shannon L (1987) Seasonality in the oxygen minimum layers at the extremities of the Benguela system. S Afr J Mar Sci 5:11–34CrossRefGoogle Scholar
  26. Debenay J, Guiral D, Paarra M (2004) Behaviour and taphonomic loss in foraminiferal assemblages of mangrove swamps of French Guiana. Mar Geol 208:295–314CrossRefGoogle Scholar
  27. Diz P, Frances G (2008) Distribution of live benthic foraminifera in the Ria de Vigo (NW Spain). Mar Micropaleontol 66:165–191CrossRefGoogle Scholar
  28. Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim et Cosmochim Acta 74:6655–6668CrossRefGoogle Scholar
  29. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
  30. Emeis K, Brüchert V, Currie B, Endler R, Ferdelman T, Kiessling A, Leipe T, Noli-Peard K, Struck U, Vogt T (2004) Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont Shelf Res 24:627–642CrossRefGoogle Scholar
  31. Emeis K, Struck U, Leipe T, Ferdelman TG (2007) Variability in upwelling intensity and nutrient regime in the coastal upwelling system offshore Namibia: results from sediment archives. Int J Earth Sci (Geol. Rundsch). doi: 10.1007/s00531-007-0236-5Google Scholar
  32. Erbacher J, Nelskamp S (2006) Comparison of benthic foraminifera inside and outside a sulphur-oxidizing bacterial mat from the present oxygen-minimum zone off Pakistan (NE Arabian Sea). Deep-Sea Res Part I 53:751–775CrossRefGoogle Scholar
  33. Eriksson PG, Altermann W, Nelson DR, Mueller W, Catuneanu O (eds.) (2004) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, 941 ppGoogle Scholar
  34. Ernst S, Bours R, Duijnstee I, van der Zwaan B (2005) Experimental effects of an organic matter pulse and oxygen depletion on a benthic foraminiferal shelf community. J Foraminifer Res 35:177–197CrossRefGoogle Scholar
  35. Fenchel T, Finlay B (2008) Oxygen and the spatial structure of microbial communities. Biol Rev 83:553–569PubMedGoogle Scholar
  36. Fischer WW (2008) Life before the rise of oxygen. Nature 455:1051–1052PubMedCrossRefGoogle Scholar
  37. Frieling D, Mrazek J (2007) Sind Manganknollen Tiefwasser-Onkoide? Senckenberg maritima 37(2):93–128CrossRefGoogle Scholar
  38. Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:80–86PubMedCrossRefGoogle Scholar
  39. Gross O (2000) Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments. Hydrobiologia 426:123–137CrossRefGoogle Scholar
  40. Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deepsea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580CrossRefGoogle Scholar
  41. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. Science 298:2372–2374PubMedCrossRefGoogle Scholar
  42. Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232–235PubMedCrossRefGoogle Scholar
  43. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, Mccoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720CrossRefGoogle Scholar
  44. Heinz P, Geslin E, Hemleben C (2005) Laboratory observations of benthic foraminiferal cysts. Mar Biol Res 1:149–159CrossRefGoogle Scholar
  45. Høgslund S, Revsbech N, Cedhagen T, Nielsen L, Gallardo V (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J Exp Mar Biol Ecol 359:85–91CrossRefGoogle Scholar
  46. Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132CrossRefGoogle Scholar
  47. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-years-old shallow-marine siliciclastic deposits. Nature 463:934–938PubMedCrossRefGoogle Scholar
  48. Kato Y, Suzuki K, Nakamura K, Hickman AH, Nedachi M, Kusakabe M, Bevacqua DC, Ohmoto H (2009) Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth Planet Sci Lett 278:40–49CrossRefGoogle Scholar
  49. Kazmierczak J, Altermann W (2002) Neoarchean biomineralisation by benthic cyanobacteria. Science 298:2351PubMedCrossRefGoogle Scholar
  50. Kazmierczak J, Kempe S, Altermann W (2004) Microbial origin of Precambrian carbonates: lessons from modern analogues. In: Eriksson PG, Altermann W, Nelson DR, Mueller W, Catuneanu O (eds.) The Precambrian Earth: Tempos and Events, vol 12, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 545–563Google Scholar
  51. Kazmierczak J, Altermann W, Kremer B, Kempe S, Eriksson PG (2009) Mass occurrence of benthic coccoid cyanobacteria and their role in the production of carbonates in Neoarchean of South Africa. Precambrian Res 173:79–92CrossRefGoogle Scholar
  52. Knoll AH (2003) The geologic consequences of evolution. Geobiology 1:3–14CrossRefGoogle Scholar
  53. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 361:1023–1038CrossRefGoogle Scholar
  54. Koho KA, Pina-Ochoa E, Geslin E, Risgaard-Petersen N (2011) Vertical migration, nitrate uptake and denitrification: survival mechanisms of foraminifers (Globobulimina turgida) under low oxygen conditions. FEMS Microbiol Ecol 75:273–283PubMedCrossRefGoogle Scholar
  55. Kremer B, Kazmierczak J (2005) Cyanobacterial mats from Silurian black radiolarian cherts: phototrophic life at the edge of darkness? J. Sediment Res 75:897–906. doi:10.2110/ jsr.2005.069CrossRefGoogle Scholar
  56. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 48:1033–1036CrossRefGoogle Scholar
  57. Leiter C (2008) Benthos-Foraminiferen in Extremhabitaten: Auswertung von Meteor-Expeditionen vor Namibia. Ph.D. thesis, Ludwig-Maximilians-Universitaet, Munich, Germany, URL http://edoc.ub.uni-muenchen.de/view/subjects/fak20.html (In German)
  58. Leiter C, Altenbach AV (2010) Benthic foraminifera from the diatomaceous mud belt off Namibia: characteristic species for severe anoxia. Palaeontol Electron, vol 13(2); 11A:19p; http://palaeo-electronica.org/2010_2/188/index.html
  59. Licari L, Mackensen A (2005) Benthic foraminifera off West Africa (1N to 32S): Do live assemblages from the topmost sediment reliably record environmental variability? Mar Micropaleontol 55:205–233CrossRefGoogle Scholar
  60. Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera – a static concept or a dynamic adaption to optimize food acquisition? Mar Micropaleontol 20:215–234CrossRefGoogle Scholar
  61. Martin RE, Quigg A, Podkovyrov V (2008) Marine Biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeogr Palaeoclimatol Palaeoecol 258:277–291CrossRefGoogle Scholar
  62. Menuz V, Howell KS, Gentina S, Epstein S, Riezman I, Fornallaz-Mulhauser M, Hengartner MO, Gomez M, Riezman H, Martinou J-C (2009) Protection of C. elegans from Anoxia by HYL-2 Ceramide Synthase. Science 324:381–384PubMedCrossRefGoogle Scholar
  63. Mohrholz V, Bartholomae CH, van der Plas AK, Lass HU (2008) The seasonal variability of the Northern Benguela undercurrent and its relation to the oxygen budget on the shelf. Cont Shelf Res 28:424–441CrossRefGoogle Scholar
  64. Moodley L, van der Zwaan GJ, Herman PMJ, Kempers L, van Breugel P (1997) Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar Ecol Prog Ser 158:151–163CrossRefGoogle Scholar
  65. Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266PubMedCrossRefGoogle Scholar
  66. Murray JW (2000) The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera. J Foraminifer Res 30:244–245CrossRefGoogle Scholar
  67. Ohmoto H (2004) Archean atmosphere, hydrosphere and biosphere. In: Eriksson PG, Altermann W, Nelson DR, Mueller W, Catuneanu O (eds.) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 361–387Google Scholar
  68. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 424:908–911CrossRefGoogle Scholar
  69. Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS (2003) The evolution of early foraminifera. PNAS 100:11494–11498PubMedCrossRefGoogle Scholar
  70. Pina-Ochoa E, Koho KA, Geslin E, Risgaard-Petersen N (2010) Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification. Mar Ecol Prog Ser 417:39–49CrossRefGoogle Scholar
  71. Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysgaard S, Risgaard-Petersen N (2010) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. PNAS 107:1148–1153PubMedCrossRefGoogle Scholar
  72. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing of the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefGoogle Scholar
  73. Richardson S, Rutzler K (1999) Bacterial endosymbionts in the agglutinating foraminiferan Spiculidendron corallicolum Rutzler and Richardson 1996. Symbiosis 26:299–312Google Scholar
  74. Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, Derksen JWM, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96PubMedCrossRefGoogle Scholar
  75. Schieber J (2009) Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeo Palaeoclim Palaeoecol 271:292–300CrossRefGoogle Scholar
  76. Schopf JW (1995) Metabolic memories of the Earth’s earliest biosphere. In: Marshall C, Schopf JW (eds.) Evolution and molecular revolution. Jones and Bartlett, Boston, pp 73–107Google Scholar
  77. Sleep NH, Bird DK (2007) Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5:101–117CrossRefGoogle Scholar
  78. Sleep NH, Bird DK (2008) Evolutionary ecology during the rise of dioxygen in the Earth’s atmosphere. Philos Trans R Soc B. doi:10.1098/rstb.2008.0018Google Scholar
  79. Sugitani K, Grey K, Allwood A, Nagaoka T, Mimura K, Minami M, Marshall CP, van Kranendonk MJ, Walter MR (2007) Diverse microstructures from c. 3.4 Ga Strelley Pool Chert, Pilabra Craton, Western Australia: microfossils, dubiofossil, or pseudofossils. Precambrian Res 158:228–262CrossRefGoogle Scholar
  80. Sugitani K, Lepot K, Nagaoka T, Mimura K, Van Kranendonk M, Oehler DZ, Walter MR (2010) Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10(9):899–920PubMedCrossRefGoogle Scholar
  81. Takata H, Seto K, Sakai S, Tanaka S, Takayasu K (2005) Correlation of Virgulinella fragilis Grindell & Collen (benthic foraminiferid) with near-anoxia in Aso-kai Lagoon, central Japan. J Micropalaeontol 24:159–167CrossRefGoogle Scholar
  82. Ueno Y, Isozaki Y, McNamara KJ (2006) Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. Int Geol Rev 48:78–88CrossRefGoogle Scholar
  83. van der Plas AK, Monteiro PMS, Pascall A (2007) Cross-shelf biogeochemical characteristics of sediments in the central Benguela and their relationship to overlying water column hypoxia. Afr J Mar Sci 29:37–47CrossRefGoogle Scholar
  84. Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  85. Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–373PubMedCrossRefGoogle Scholar
  86. Weeks SJ, Currie B, Bakun A, Peard KR (2004) Hydrogen sulphide eruptions in the Atlantic Ocean off Southern Africa: implications of a new view based on SeaWiFS satellite imagery. Deep-Sea Res Part I 51:153–172CrossRefGoogle Scholar
  87. Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6PubMedCrossRefGoogle Scholar
  88. Zimmer C (2009) On the origin of eukaryotes. Science 325:666–668PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  • Wladyslaw Altermann
    • 1
  • Alexander Volker Altenbach
    • 2
    • 3
  • Carola Leiter
    • 2
  1. 1.Department of GeologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.GeoBioCenterLudwig-Maximilians-UniversityMunichGermany
  3. 3.Department for Earth and Environmental ScienceLudwig-Maximilians-Universität MunichMunichGermany

Personalised recommendations