Anoxia pp 17-38 | Cite as

Biogeochemical Reactions in Marine Sediments Underlying Anoxic Water Bodies

  • Tina Treude
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)


This chapter provides an overview of biogeochemical reactions in marine sediments underlying temporal or permanent hypoxic and anoxic water bodies in modern and past oceans. The aim of this review is to describe the chemical environment that organisms inhabiting surface sediments encounter during oxygen depletion or deficiency. It also introduces important metabolic processes that govern or are governed by different redox settings. In Sect. 2, biogeochemical processes in sediments underlying fully oxygenated water bodies are elucidated. Section 3 explains differences in biogeochemical reactions in hypoxic and anoxic environments as opposed to oxygenated environments. Modern oxygen minimum zones and permanent anoxic environments are introduced. In Sect. 4 biogeochemical processes during past anoxic events and during the era before the first rise of oxygen are reviewed.


Sulfate Reduction Biogeochemical Process Aerobic Respiration Oxygenic Photosynthesis Organic Matter Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441:714–718PubMedCrossRefGoogle Scholar
  2. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142PubMedCrossRefGoogle Scholar
  3. Armstrong HA, Abbott GD, Turner BR, Makhlouf IM, Muhammad AB, Pedentchouk N, Peters H (2009) Black shale deposition in an upper Ordovician-Silurian permanently stratified, peri-göacial basin, southern Jordan. Palaeogeogr Paleoclimatol Palaeoecol 273:368–377CrossRefGoogle Scholar
  4. Awramik SM (1992) The oldest record of photosynthesis. Photosynth Res 33:75–89PubMedCrossRefGoogle Scholar
  5. Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62CrossRefGoogle Scholar
  6. Beatty TJ, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci 102(26):9306–9310PubMedCrossRefGoogle Scholar
  7. Bekker A, Holland HD, Wang P-L, Rumble D III, Stein DL, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120PubMedCrossRefGoogle Scholar
  8. Berner RA (1994) GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 294(56):56–91CrossRefGoogle Scholar
  9. Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204CrossRefGoogle Scholar
  10. Bertics VJ, Sohm JA, Treude T, Chow C-ET, Capone DG, Fuhrman JA, Ziebis W (2010) Burrowing deeper into the benthic nitrogen fixation: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar Ecol Prog Ser 409:1–15CrossRefGoogle Scholar
  11. Beukes NJ, Klein C (1992) Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 147–151Google Scholar
  12. Bianchi CN, Johansson B, Elmgren R (2000) Breakdown of phytoplankton in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. J Exp Mar Biol Ecol 251:161–183PubMedCrossRefGoogle Scholar
  13. Bond PG, Wignall PB (2008) The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeogr Paleoclimatol Palaeoecol 263:107–118CrossRefGoogle Scholar
  14. Bralower TJ (2008) Volcanic cause of catastrophe. Nature 454:285–287PubMedCrossRefGoogle Scholar
  15. Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlösser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Ac 67(23):4505–4518CrossRefGoogle Scholar
  16. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from Stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77PubMedCrossRefGoogle Scholar
  17. Cai W-J, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–131CrossRefGoogle Scholar
  18. Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res 36(1):121–138CrossRefGoogle Scholar
  19. Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329PubMedCrossRefGoogle Scholar
  20. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  21. Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulfur-isotope studies. Nature 382:127–132PubMedCrossRefGoogle Scholar
  22. Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology 7:385–392PubMedCrossRefGoogle Scholar
  23. Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. Advances in marine biology. Elsevier, San DiegoGoogle Scholar
  24. Castresana J, Saraste M (1995) Evolution of energetic metabolism: the respiration-early hypothesis. Trends Biochem Sci 20:443–448PubMedCrossRefGoogle Scholar
  25. Catling DC, Claire MW (2005) How Earth’ atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20CrossRefGoogle Scholar
  26. Cloud PE Jr (1972) A working model of the primitive Earth. Am J Sci 272:537–548CrossRefGoogle Scholar
  27. Des Marais DJ (2000) When did photosynthesis emerge on Earth? Science 289:1703–1705Google Scholar
  28. Ferdelman TG, Lee C, Pantoja S, Harder J, Bebout BM, Fossing H (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim Cosmochim Acta 61(15):3065–3079CrossRefGoogle Scholar
  29. Fischer JP, Ferdelman TG, D’Hondt SD, Roey H, Wenzhöfer F (2009) Oxygen penetration deep into the sediment of the South Pacific gyre. Biogeosciences 6:1467–1478CrossRefGoogle Scholar
  30. Fossing H (1990) Sulfate reduction in shelf sediments in the upwelling region off Central Peru. Continent Shelf Res 10(4):355–367CrossRefGoogle Scholar
  31. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE et al (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  32. Fossing H, Ferdelman TG, Berg P (2000) Sulphate reduction and methane oxidation in continental sediments influenced by irrigation (South-East Atlantic off Namibia). Geochim Cosmochim Acta 64(5):897–910CrossRefGoogle Scholar
  33. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289CrossRefGoogle Scholar
  34. Glud RN, Gundersen JK, Jørgensen BB, Revsbech NP, Schulz HD (1994) Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res I 41(11/12):1767–1788Google Scholar
  35. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53PubMedCrossRefGoogle Scholar
  36. Grotzinger JP, Knoll AH (1999) Stromatolites in precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358PubMedCrossRefGoogle Scholar
  37. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250CrossRefGoogle Scholar
  38. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115CrossRefGoogle Scholar
  39. Helly JJ, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res I 51:1159–1168CrossRefGoogle Scholar
  40. Henrichs SM, Farrington JW (1984) Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter. Limnol Oceanogr 29(1):1–19CrossRefGoogle Scholar
  41. Howell MW, Thunell RC (1992) Organic carbon accumulation in Bannock Basin: evaluating the role of productivity in the formation of eastern Mediterranean sapropels. Mar Geol 103:461–471CrossRefGoogle Scholar
  42. Huettel M, Gust G (1992) Impact of bioroughness on intertidal solute exchange in permeable sediments. Mar Ecol Prog Ser 89(2–3):253–267CrossRefGoogle Scholar
  43. Irving E, North FK, Couillard R (1974) Oil, climate and tectonics. Can J Earth Sci 11(1):1–17CrossRefGoogle Scholar
  44. Jenkyns HC (1988) The early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidences. Am J Sci 288:101–151CrossRefGoogle Scholar
  45. Jiang G, Shi X, Zhang S (2006) Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chin Sci Bull 51(10):1152–1173CrossRefGoogle Scholar
  46. Jones CE, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301:112–149CrossRefGoogle Scholar
  47. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine biogeochemistry. Springer, Berlin, pp 173–201Google Scholar
  48. Jørgensen BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. Geol Soc Am Spec Pap 379:63–81Google Scholar
  49. Jørgensen BB, Glud RN, Holby O (2005) Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Mar Ecol Prog Ser 292:85–95CrossRefGoogle Scholar
  50. Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33(11):865–863CrossRefGoogle Scholar
  51. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  52. Kemp AES, Pearce RB, Koizumi I, Pike J, Rance SJ (1999) The role of mat-forming diatoms in the formation of Mediterranean sapropels. Nature 398:57–61CrossRefGoogle Scholar
  53. Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  54. Kidd RB, Cita MB, Ryan WBF (1978) Stratigraphy of eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance. Init Rep DSDP 42:421–443Google Scholar
  55. Knoll AH (1992) Biological and biogeochemical preludes to the Ediacardian radiation. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa. Plenum, New York, pp 53–84Google Scholar
  56. Konovalov SK III, Luther G, Yücel M (2007) Porewater redox and processes in the Black Sea sediments. Chem Geol 245:254–274CrossRefGoogle Scholar
  57. Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnol Oceanogr 47(1):230–240CrossRefGoogle Scholar
  58. Krantzberg G (1985) The influence of bioturbation on physical, chemical, and biological parameters in aquatic environments: a review. Environ Pollut 39(Series A):99–122Google Scholar
  59. Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24CrossRefGoogle Scholar
  60. Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediments: which is faster? Limnol Oceanogr 40(3):1430–1437CrossRefGoogle Scholar
  61. Kristensen E, Haese RR, Kostka JE (2005) Interactions between macro- and microorganisms in marine sediments. Coastal and estuarine studies. American Geophysical Union, Washington, DCGoogle Scholar
  62. Kump LR, Pavlov AA, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of ocean anoxia. Geology 33(5):397–400CrossRefGoogle Scholar
  63. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Damsté JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611PubMedCrossRefGoogle Scholar
  64. Lampitt RS, Antia AN (1997) Particle flux in deep seas: regional characteristics and temporal variability. Deep-Sea Res I 44(8):1377–1403CrossRefGoogle Scholar
  65. Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M et al (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–584PubMedCrossRefGoogle Scholar
  66. Lepot K, Benzerara K, Brown GE Jr, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geosci 1:118–121CrossRefGoogle Scholar
  67. Levin LA, Gutierrez D, Rathburn AE, Neira C, Sellanes J, Munoz P, Gallardo VA, Salamance M (2002) Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Niño. Prog Oceanogr 53:1–27CrossRefGoogle Scholar
  68. McKay CP, Hartman H (1991) Hydrogen peroxide and the evolution of oxygenic photosynthesis. Orig Life Evol Biosph 21:157–163PubMedCrossRefGoogle Scholar
  69. Meysman FJR, Middelburg JJ, Heip CHR (2006) New insights into Darwin’s last idea: bioturbation. Trends Ecol Evol 21:688–695PubMedCrossRefGoogle Scholar
  70. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293CrossRefGoogle Scholar
  71. Moodley L, Middelburg JJ, Herman PMJ, Soetaert K, de Lange GJ (2005) Oxygenation and organic-matter preservation in marine sediments: direct experimental evidence from ancient organic carbon-rich deposits. Geology 33(11):889–892CrossRefGoogle Scholar
  72. Morante R, Hallam A (1996) Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction. Geology 24(5):391–394CrossRefGoogle Scholar
  73. Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans- I. Organic carbon preservation. Deep Sea Res 26A:1347–1367Google Scholar
  74. Nelson DC, Jørgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52(2):225–233PubMedGoogle Scholar
  75. Neretin LN (2006) Past and present water column anoxia, Nato Science Series, IV. Earth and environmental sciences, vol 64. Springer, DordrechtGoogle Scholar
  76. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091PubMedCrossRefGoogle Scholar
  77. Nisbet EG, Cann JR, Van Dover CL (1995) Origins of photosynthesis. Nature 373:479–480CrossRefGoogle Scholar
  78. Passier HF, Middelburg JJ, van Os BJH, De Lange GJ (1996) Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochim Cosmochim Acta 60(5):751–763CrossRefGoogle Scholar
  79. Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in modern ocean. Prog Oceanogr 80:113–128CrossRefGoogle Scholar
  80. Pemberton GS, Risk MJ, Buckley D (1976) Supershrimp: deep bioturbation in the Strait of Canso, Nova Scotia. Science 192:790–791PubMedCrossRefGoogle Scholar
  81. Petsch ST (2005) The global oxygen cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam, pp 515–556Google Scholar
  82. Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49(3):693–705CrossRefGoogle Scholar
  83. Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J, 1, 341–353Google Scholar
  84. Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724CrossRefGoogle Scholar
  85. Reeburgh WS, Ward BB, Whalen SC, Sandbeck KA, Kilpatrick KA, Kerkhof LJ (1991) Black Sea methane geochemistry. Deep-Sea Res I 38(2):1189–1210CrossRefGoogle Scholar
  86. Revsbech NP, Soerensen J, Blackburn TH (1980) Distribution of oxygen in marine sediments measured with microelectrodes. Limnol Oceanogr 25(3):403–411CrossRefGoogle Scholar
  87. Revsbech NP, Madsen B, Jørgensen BB (1986) Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol Oceanogr 31(2):293–304CrossRefGoogle Scholar
  88. Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, Derksen JWM et al (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96PubMedCrossRefGoogle Scholar
  89. Rosenberg R, Diaz RJ (1993) Sulfur bacteria (Beggiatoa spp.) mats indicate hypoxic condition in the inner Stockholm Archipelago. Ambio 22(1):32–36Google Scholar
  90. Sandberg CA, Morrow JR, Ziegler W (2002) Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geol Soc Am Spec Pap 356:473–487Google Scholar
  91. Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol En Mijnbouw 55(3–4):179–184Google Scholar
  92. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedCrossRefGoogle Scholar
  93. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81PubMedCrossRefGoogle Scholar
  94. Shen Y, Knoll AH, Walter MR (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632–635PubMedCrossRefGoogle Scholar
  95. Smith KL, Hinga KR (1983) Sediment community respiration in the deep sea. In: Rowe GT (ed) Deep Sea Biol. Wiley, New YorkGoogle Scholar
  96. Strauss H, Strauss H (2005) Anoxia through time. In: Neretin LN (ed) Past and present water column anoxia, NATO science series: IV: Earth and environmental sciences. Springer, Dordrecht, p 541Google Scholar
  97. Suess E (1980) Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature 288:260–288CrossRefGoogle Scholar
  98. Sundby B, Silverberg N (1985) Manganese fluxes in the benthic boundary layer. Limnol Oceanogr 30(2):372–381CrossRefGoogle Scholar
  99. Sundby B, Gobeil C, Silverberg N, Mucci A (1992) The phosphorous cycle in coastal marine sediments. Limnol Oceanogr 37(6):1129–1145CrossRefGoogle Scholar
  100. Turgeon SC, Creaser RA (2008) Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454:323–327PubMedCrossRefGoogle Scholar
  101. Twitchett RJ (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Paleoclimatol Palaeoecol 154:27–37CrossRefGoogle Scholar
  102. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519PubMedCrossRefGoogle Scholar
  103. van de Schootbrugge B, McArthur JM, Baily TR, Rosenthal Y, Wright JD, Miller KG (2005) Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Palaeogeography 20:1–10Google Scholar
  104. Walker JCG (1987) Was the Archaean biosphere upside down? Nature 329:710–712PubMedCrossRefGoogle Scholar
  105. Walter MR (1983) Archean stromatolites - evidence of the earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 187–213Google Scholar
  106. Weeks SJ, Currie B, Bakun A (2002) Massive emissions of toxic gas in the Atlantic. Nature 415:493–494PubMedCrossRefGoogle Scholar
  107. Weeks SJ, Currie B, Bakun A, Kathleen RP (2004) Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on Sea WiFS satellite imagery. Deep Sea Res I 51:153–172CrossRefGoogle Scholar
  108. Wenzhöfer F, Glud RN (2002) Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep Sea Res I 49:1255–1279CrossRefGoogle Scholar
  109. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158PubMedCrossRefGoogle Scholar
  110. Wilson TRS, Thomsen L, Colley S, Hydes DJ, Higgs NC (1985) Early organic diagenesis: the significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim Cosmochim Ac 49:811–822CrossRefGoogle Scholar
  111. Ziebis W, Huettel M, Forster S (1996) The impact of biogenic sediment topography on oxygen fluxes in permeable sediments. Mar Ecol Prog Ser 140:227–237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  1. 1.Department of Marine BiogeochemistryLeibniz Institute of Marine Sciences (IFM-GEOMAR)KielGermany

Personalised recommendations