Anoxia pp 249-285 | Cite as

Benthic Foraminifera: Inhabitants of Low-Oxygen Environments

  • Karoliina A. Koho
  • Elisa Piña-Ochoa
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)


Benthic foraminifera, single-celled eukaryotes, constitute a significant part of the living community in low-oxygen or even oxygen-depleted marine environments. Although the diversity is typically low and the dominance high, selected species appears to thrive in such “hostile” environments. In this chapter, the spatial distribution of modern benthic foraminifera, inhabiting the low-oxygen environments from the eutrophic, hypoxic continental shelf settings to the deep ocean oxygen minimum zones (OMZs), is discussed and typical assemblage composition outlined. Furthermore, the in-sediment distribution, or foraminiferal microhabitat, is summarized, and focus is given on species encountered in the deeper hypoxic and anoxic sediment units. Finally, current laboratory experiments and survival strategies including nitrate storage and the physiological role of chloroplasts and bacterial husbandry of foraminifera living in low-oxygen environments are discussed. Recent advances in our understanding of the foraminiferal role in the marine N-cycle and future directions in foraminiferal ecology studies are also addressed.


Pore Water Benthic Foraminifera Oxygen Minimum Zone Foraminiferal Species Oxygen Penetration Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are very grateful to Nils Risgaard-Petersen for his always inspiring, fruitful, and enthusiastic support in our joint collaboration in the role of benthic foraminifera in the N-cycle. We also acknowledge our colleagues Emmanuelle Geslin, Frans Jorissen, and Tomas Cedhagen for their help with an earlier version of Table 1. Tom Jilbert is thanked for proofreading and general comments regarding the structure of the chapter.


  1. Altenbach AV, Pflaumann U, Schiebel R, Thies A, Timm S, Trauth M (1999) Scaling percentages and distributional patterns of benthic foraminifera with flux rates or organic carbon. J Foraminifer Res 29:173–185Google Scholar
  2. Alve E (1994) Opportunistic features of the foraminifer Stainforthia fusiformis (Williamson): evidence from Frierfjord, Norway. J Micropaleontol 13:24Google Scholar
  3. Alve E (1995a) Benthic foraminiferal distribution and recolonization of formerly anoxic environments in Drammensfjord, southern Norway. Mar Micropaleontol 25:169–186Google Scholar
  4. Alve E (1995b) Benthic foraminiferal response to estuarine pollution: a review. J Foraminifer Res 25:190–203Google Scholar
  5. Alve E (2003) A common opportunistic foraminiferal species as an indicator of rapidly changing conditions in a range of environments. Estuar Coast Shelf Sci 57:501–514Google Scholar
  6. Alve E, Bernhard JM (1995) Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar Ecol Prog Ser 116:137–152Google Scholar
  7. Alve E, Murray JW (1997) High benthic fertility and taphonomy of foraminifera: a case study of the Skagerrak, North Sea. Mar Micropaleontol 31:157–175Google Scholar
  8. Alve E, Murray JW (1999) Marginal marine environments of the Skagerrak and Kattegat, a baseline study of living (stained) benthic foraminiferal ecology. Palaeogeogr Palaeoclimatol Palaeoecol 146:171–193Google Scholar
  9. Bandy OL (1964) Foraminiferal trends associated with deep-water sands, San-Pedro and Santa-Monica basins, California. J Paleontol 38:138–148Google Scholar
  10. Barmawidjaja DM, Jorissen FJ, Puskaric S, Van Der Zwaan GJ (1992) Microhabitat selection by benthic foraminifera in the northern Adriatic Sea. J Foraminifer Res 22:297–317Google Scholar
  11. Barmawidjaja DM, Van der Zwaan GJ, Jorissen FJ, Puskaric S (1995) 150 years of eutrophication in the northern Adriatic Sea: evidence from a benthic foraminiferal record. Mar Ecol 122:367–384Google Scholar
  12. Bartels-Jónsdóttir HB, Knudsen KL, Schönfeld J, Lebreiro SM, Abrantes FG (2006a) Recent benthic foraminifera from the Tagus Prodelta and Estuary, Portugal: microhabitats, assemblage composition and stable isotopes. Zitteliana Reihe A: Mitteilungen der Bayerischen Staatssammlung fur Palaontologie und Geologie 46:91–104Google Scholar
  13. Bartels-Jónsdóttir HB, Knudsen KL, Abrantes F, Lebreiro S, Eiríksson J (2006b) Climate variability during the last 2000 years in the Tagus Prodelta, western Iberian Margin: Benthic foraminifera and stable isotopes. Mar Micropaleontol 59:83–103Google Scholar
  14. Bernhard JM (1992) Benthic foraminiferal distribution and biomass related to pore-water oxygen content – Central California continental slope and rise. Deep-Sea Res A 39:585–605Google Scholar
  15. Bernhard JM (1993) Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar Micropaleontol 20:203–213Google Scholar
  16. Bernhard JM (1996) Microaerophilic and facultative anaerobic benthic foraminifera: a review of experimental and ultrastructural evidence. Revue de Paleobiologie 15:261–275Google Scholar
  17. Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299:861PubMedGoogle Scholar
  18. Bernhard JM, Alve E (1996) Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia. Mar Micropaleontol 28:5–17Google Scholar
  19. Bernhard JM, Bowser SS (2008) Peroxisome proliferation in foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure? J Eukaryot Microbiol 55:135–144PubMedGoogle Scholar
  20. Bernhard JM, Reimers CE (1991) Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin. Biogeochemistry 15:127–149Google Scholar
  21. Bernhard JM, Sen Gupta BK (1999) Foraminifera of oxygen-depleted environments. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic Publishers, Dordrecht, pp 201–216Google Scholar
  22. Bernhard JM, Sen Gupta BK, Borne PF (1997) Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin, U.S. Pacific continental margin. J Foraminifer Res 27:301–310Google Scholar
  23. Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403:77–80PubMedGoogle Scholar
  24. Bernhard JM, Buck KR, Barry JP (2001) Monterey cold-seep biota: assemblages, abundance and ultrastructure of living foraminifera. Deep-Sea Res I 48:2233–2249Google Scholar
  25. Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr 48:813–828Google Scholar
  26. Blackwelder P, Hood T, Alvarez-Zarikian C, Nelsen TA, McKee B (1996) Benthic foraminifera from the NECOP study area impacted by the Mississippi River plume and seasonal hypoxia. Quat Int 31:19–36Google Scholar
  27. Brandy O, Rodolfo KS (1964) Distribution of foraminifera and sediments, Peru-Chile Trench area. Deep-Sea Res 11:817–837Google Scholar
  28. Brewer PG (1971) Hydrographic and chemical data from the Black Sea. Woods Hole Oceanographic Institution. Technical Report Reference No. 71–65Google Scholar
  29. Brunner CA, Beall JM, Bentley SJ, Furukawa Y (2006) Hypoxia hotspots in the Mississippi Bight. J Foraminifer Res 36:95–107Google Scholar
  30. Burdige D (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485PubMedGoogle Scholar
  31. Caspers H (1957) Black Sea and Sea of Azov. Geol Soc Am Mem 67:803–890Google Scholar
  32. Cedhagen T (1991) Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia 33:17–30Google Scholar
  33. Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105Google Scholar
  34. Corliss BH (1985) Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314:435–438Google Scholar
  35. Corliss BH (1991) Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Mar Micropaleontol 17:195–236Google Scholar
  36. Corliss BH, Emerson S (1990) Distribution of rose bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep Sea Res A Oceanogr Res Pap 37:381–400Google Scholar
  37. Corliss BH, Fois E (1990) Morphotype analysis of deep-sea benthic foraminifera from the northwest Gulf of Mexico. Palaios 5:589–605Google Scholar
  38. Cowie GL, Levin LA (2009) Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea). Deep-Sea Res II 56:261–270Google Scholar
  39. De Stigter HC, Jorissen FJ, Van Der Zwaan GJ (1998) Bathymetric distribution and microhabitat partitioning of live (Rose Bengal stained) benthic foraminifera along a shelf to bathyal transect in the southern Adriatic Sea. J Foraminifer Res 28:40–65Google Scholar
  40. Dean WE, Piper DZ, Peterson LC (1999) Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: a record of water-column anoxia and climate. Geology 27:507–510Google Scholar
  41. Debenay JP, Bénéteau E, Zhang J, Stouff V, Geslin E, Redois F, Fernandez-Gonzalez M (1998) Ammonia beccarii and Ammonia tepida (Foraminifera): morphofunctional arguments for their distinction. Mar Micropaleontol 34:235–244Google Scholar
  42. Degobbis D, Precali R, Ivancic I, Smodlaka N, Fuks D, Kveder S (2000) Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication. Int J Environ Pollut 13:495–533Google Scholar
  43. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929PubMedGoogle Scholar
  44. Diz P, Francés G, Costas S, Souto C, Alejo I (2004) Distribution of benthic foraminifera in coarse sediments, Ría de Vigo, NW Iberian margin. J Foraminifer Res 34:258–275Google Scholar
  45. Douglas RG (1981) Paleoecology of continental margin basins: A modern case history from the borderland of southern California. In: Douglas RG, Colburn IP, Gorsline DS (eds) Depositional systems of active continental margin basins. Short course notes, society of economic and petroleum mineralogist, Pacific Section. San Franciso, pp 121–156Google Scholar
  46. Douglas RG, Heitman HL (1979) Slope and basin benthic foraminifera of the California borderland. Geol of cont slop 27:231–246Google Scholar
  47. Duchemin G, Jorissen FJ, Andrieux-Loyer F, Le Loch F, Hily C, Philippon X (2005) Living benthic foraminifera from “la grande vasière”, French atlantic continental shelf: faunal composition and microhabitats. J Foraminifer Res 35:198–218Google Scholar
  48. Duijnstee IAP, Ernst SR, Van Der Zwaan GJ (2003) Effect of anoxia on the vertical migration of benthic foraminifera. Mar Ecol Prog Ser 246:85–94Google Scholar
  49. Duijnstee I, de Lugt I, Noordegraaf HV, Van Der Zwaan GJ (2004) Temporal variability of the northern foraminiferal densities in Adriatic Sea. Mar Micropaleontol 50:125–148Google Scholar
  50. Erbacher J, Nelskamp S (2006) Comparison of benthic foraminifera inside and outside a sulphur-oxidizing bacterial mat from the present oxygen-minimum zone off Pakistan (NE Arabian Sea). Deep-Sea Res 1 Oceanogr Res Pap 53:751–775Google Scholar
  51. Ernst S, Van Der Zwaan B (2004) Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community. Deep-Sea Res I Oceanogr Res Pap 51:1709–1739Google Scholar
  52. Evans JR, Austin WEN, Brew DS, Wilkinson IP, Kennedy HA (2002) Holocene shelf sea evolution offshore northeast England. Mar Geol 191:147–164Google Scholar
  53. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds, Oxford series in Ecology and Evolution. Oxford University Press, OxfordGoogle Scholar
  54. Filipsson HL, Nordberg K (2004) A 200-year environmental record of a low-oxygen fjord, Sweden, elucidated by benthic foraminifera, sediment characteristics and hydrographic data. J Foraminifer Res 34:277–293Google Scholar
  55. Fontanier C, Jorissen FJ, Licari L, Alexandre A, Anschutz P, Carbonel P (2002) Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Res I 49:751–785Google Scholar
  56. Fontanier C, Jorissen FJ, Chailloua G, David C, Anschutz P, Lafon V (2003) Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay. Deep-Sea Res (1 Oceanogr Res Pap) 50:457–494Google Scholar
  57. Fontanier C, Jorissen FJ, Chaillou G, Anschutz P, Grémare A, Griveaud C (2005) Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: faunal response to focusing of refractory organic matter. Deep-Sea Res I 52:1189–1227Google Scholar
  58. Fontanier C, MacKensen A, Jorissen FJ, Anschutz P, Licari L, Griveaud C (2006) Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: microhabitat impact and seasonal variability. Mar Micropaleontol 58:159–183Google Scholar
  59. Fontanier C, Jorissen FJ, Lansard B, Mouret A, Buscail R, Schmidt S, Kerhervé P, Buron F, Zaragosi S, Hunault G, Ernoult E, Artero C, Anschutz P, Rabouille C (2008) Live foraminifera from the open slope between Grand Rhône and Petit Rhône Canyons (Gulf of Lions, NW Mediterranean). Deep-Sea Res I 55:1532–1553Google Scholar
  60. Fossing H, Gallardo VA, Jorgensen BB, Huttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Kuver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat forming sulphur bacterium Thioploca. Nature 374:713–715Google Scholar
  61. Froelich PN (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090Google Scholar
  62. Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19:1807–1819PubMedGoogle Scholar
  63. Geslin E, Heinz P, Jorissen F, Hemleben C (2004) Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations. Mar Micropaleontol 53:227–243Google Scholar
  64. Glen CR, Arthur MA (1985) Sedimentary and geochemical indicators of productivity and oxygen contents in modern and ancient basins. The Holocene Black Sea as the type anoxic basin. Chemical Geology 48:325–354Google Scholar
  65. Glud RN, Thamdrup B, Stahl H, Wenzhoefer F, Glud A, Nomaki H, Oguri K, Revsbech NP, Kitazatoe H (2009) Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan). Limnol Oceanogr 54:723–734Google Scholar
  66. Gooday AJ (1986) Meiofaunal foraminiferans from the bathyal Porcupine Seabight (north-east Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res 33:1345–1373Google Scholar
  67. Gooday AJ, Levin LA, Linke P, Heeger T (1992) The role of benthic foraminifera in deep-sea food webs and carbon cycling. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer Academic Publishers, Dordrecht, pp 63–91Google Scholar
  68. Gooday AJ, Bernhard JM, Levin LA, Suhr SB (2000) Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Res II 47:25–54Google Scholar
  69. Gooday AJ, Malzone MG, Bett BJ, Lamont PA (2010) Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res II 57:1362–1382Google Scholar
  70. Gregoire M, Soetaert K (2010) Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: a biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol Model 221:2287–2301Google Scholar
  71. Gross O (2000) Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments. Hydrobiologia 426:123–137Google Scholar
  72. Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera-comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512Google Scholar
  73. Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580Google Scholar
  74. Gustafsson M, Nordberg K (1999) Benthic foraminifera and their response to hydrography, periodic hypoxic conditions and primary production in the Koljö Fjord on the Swedish west coast. J Sea Res 41:163–178Google Scholar
  75. Gustafsson M, Nordberg K (2000) Living (Stained) benthic Foraminifera and their response to the seasonal hydrographic cycle, periodic hypoxia and to primary production in Havstens Fjord on the Swedish west coast. Estuar Coast Shelf Sci 51:743–761Google Scholar
  76. Gustafsson M, Nordberg K (2001) Living (stained) benthic foraminiferal response to primary production and hydrography in the deepest part of the Gullmar Fjord, Swedish West Coast, with comparison to Höglund’s 1927 material. J Foraminifer Res 31:2–11Google Scholar
  77. Gustafsson M, Dahloff I, Blanck H, Hall P, Molander S, Nordberg K (2000) Benthic foraminiferal tolerance to tri-n-butylin (TBT) pollution in an experimental mesocosm. Mar Pollut Bull 40:1072–1075Google Scholar
  78. Halfar J, Ingle JC (2003) Modern warm-temperate and subtropical shallow-water benthic foraminifera of the southern Gulf of California, Mexico. J Foraminifer Res 33:309–329Google Scholar
  79. Helly JJ, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res I 51:1159–1168Google Scholar
  80. Hermelin JOR, Shimmield GB (1990) The importance of the oxygen minimum zone and sediment geochemistry in the distribution of Recent benthic foraminifera in the northwest Indian Ocean. Mar Geol 91:1–29Google Scholar
  81. Hess S, Jorissen FJ (2009) Distribution patterns of living benthic foraminifera from Cap Breton canyon, Bay of Biscay: faunal response to sediment instability. Deep-Sea Res I 56:1555–1578Google Scholar
  82. Høgslund S, Revsbech NP, Cedhagen T, Nielsen LP, Gallardo VA (2008) Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. J Exp Mar Biol Ecol 359:85–91Google Scholar
  83. Høgslund S, Revsbech NP, Kuenen JG, Jørgensen BB, Gallardo VA, Van De Vossenberg J, Nielsen JL, Holmkvist L, Arning ET, Nielsen LP (2009) Physiology and behaviour of marine Thioploca. ISME J 3:647–657PubMedGoogle Scholar
  84. Huettel M, Forster S, Klöser S, Fossing H (1996) Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl Environ Microbiol 62:1863–1872PubMedGoogle Scholar
  85. Ikeya N (1970) Population ecology of benthonic foraminifera in Ishukari Bay, Hokkaido, Japan. Rec Ocenogr Works Jpn 10:173–191Google Scholar
  86. Ingle JC Jr, Keller G, Kolpack RL (1980) Benthic foraminiferal biofacies, sediments and water masses of the southern Peru- Chile Trench area, southeastern Pacific Ocean. Micropaleontology 26:113–150Google Scholar
  87. Jacobs L, Emerson S, Huested SS (1987) Trace metal geochemistry in the Cariaco Trench. Deep Sea Res A 34:965–981Google Scholar
  88. Jannink NT, Zachariasse WJ, Van Der Zwaan GJ (1998) Living (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin (northern Arabian Sea). Deep-Sea Res I: Oceanogr Res Pap 45:1483–1513Google Scholar
  89. Jennings AE, Weiner NJ, Helgadottir G (2004) Modern foraminiferal faunas of the southwestern to northern Iceland shelf: oceanographic and environmental controls. J Foraminifer Res 24:180–207Google Scholar
  90. Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313Google Scholar
  91. Jorissen FJ (1987) The distribution of benthic foraminifera in the Adriatic Sea. Mar Micropaleontol 12:21–48Google Scholar
  92. Jorissen FJ, Barmawidjaja DM, Puskaric S, Van Der Zwaan GJ (1992) Vertical distribution of benthic foraminifera in the northern Adriatic Sea: the relation with the organic flux. Mar Micropaleontol 19:131–146Google Scholar
  93. Jorissen FJ, De Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol 26:3–15Google Scholar
  94. Jorissen FJ, Wittling I, Peypouquet JP, Rabouille C, Relexans JC (1998) Live benthic foraminiferal faunas off Cape Blanc, NW-Africa: community structure and microhabitats. Deep-Sea Res I 45:2157–2188Google Scholar
  95. Kaminski MA, Boersma A, Tyszka J, Holbourn AEL (1995) Response of deep-water agglutinated foraminifera to dysoxic conditions in the California Borderland basins. In: Kaminski MA, Geroch S, Gasinski MA (eds) Proceedings of the fourth international workshop on agglutinated foraminifera. Grzybowski Foundation Special Publication, Krakow, pp 131–140Google Scholar
  96. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–299PubMedGoogle Scholar
  97. Kitazato H, Ohga T (1995) Seasonal changes in deep-sea benthic foraminiferal populations: results of long-term observations at Sagami Bay, Japan. In: Sakai H, Nozaki Y (eds) Biogeochemical processes and ocean flux in the Western Pacific. Terra Scientifi Publishing Company, Tokyo, pp 331–342Google Scholar
  98. Kitazato H, Shirayama Y, Nakatsuka T, Fujiwara S, Shimanaga M, Kato Y, Okada Y, Kanda J, Yamaoka A, Masuzawa T, Suzuki K (2000) Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996-1999”. Mar Micropaleontol 40:135–149Google Scholar
  99. Kitazato H, Nakatsuka T, Shimanaga M, Kanda J, Soh W, Kato Y, Okada Y, Yamaoka A, Masuzawa T, Suzuki K, Shirayama Y (2003) Long-term monitoring of the sedimentary processes in the central part of Sagami Bay, Japan: rationale, logistics and overview of results. Prog Oceanogr 57:3–16Google Scholar
  100. Knight R, Mantoura RFC (1985) Chlorophyll and carotenoid pigments in foraminifera and their ­symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser 23:241–249Google Scholar
  101. Koho KA, Kouwenhoven T, de Stigter H, van der Zwaan G (2007) Benthic foraminifera in the Nazaré Canyon, Portuguese continental margin: sedimentary environments and disturbance. Mar Micropaleontol 66:27–51Google Scholar
  102. Koho KA, García R, de Stigter HC, Epping E, Koning E, Kouwenhoven TJ, van der Zwaan GJ (2008a) Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: a case study from Lisbon-Setúbal Canyon (southern Portugal). Prog Oceanogr 79:55–82Google Scholar
  103. Koho KA, Langezaal AM, van Lith YA, van der Duijnstee IAP, Zwaan GJ (2008b) The influence of a simulated diatom bloom on deep-sea benthic foraminifera and the activity of bacteria: a mesocosm study. Deep-Sea Res I Oceanogr Res Pap 55:696–719Google Scholar
  104. Koho KA, Piña-Ochoa E, Geslin E, Risgaard-Petersen N (2011) Survival and nitrate uptake mechanisms of foraminifers (Globobulimina turgida): laboratory experiments. FEMS Microbiol Ecol 75:273–283PubMedGoogle Scholar
  105. Kurbjeweit F, Schmiedl G, Schiebel R, Hemleben C, Pfannkuche O, Wallmann K, Schäfer P (2000) Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography 47:2913–2955Google Scholar
  106. Langezaal AM, Jorissen FJ, Braun B, Chaillou G, Fontanier C, Anschutz P, van der Zwaan GJ (2006) The influence of seasonal processes on geochemical profiles and foraminiferal assemblages on the outer shelf of the Bay of Biscay. Cont Shelf Res 26:1730–1755Google Scholar
  107. Larkin KE, Gooday AJ (2009) Foraminiferal faunal responses to monsoon-driven changes in organic matter and oxygen availability at 140 and 300 m water depth in the NE Arabian Sea. Deep-Sea Res (2 Top Stud Oceanogr) 56:403–421Google Scholar
  108. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278PubMedGoogle Scholar
  109. Leutenegger S (1984) Symbiosis in benthic foraminifera: specificity and host adaptations. J Foraminifer Res 14:16–25Google Scholar
  110. Leutenegger S, Hansen HJ (1979) Ultrastructural and radiotracer studies of pore function in foraminifera. Mar Biol 54:11–16Google Scholar
  111. Levin LA, Gage JD, Martin C, Lamont PA (2000) Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Res II 47:189–226Google Scholar
  112. Levin L, Gutiérrez D, Rathburn A, Neira C, Sellanes J, Muñoz P, Gallardo V, Salamanca M (2002) Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997–98 El Niño. Prog Oceanogr 53:1–27Google Scholar
  113. Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Neira C, Rabalais NN, Zhang J (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2063–2098Google Scholar
  114. Licari LN, Schumacher S, Wenzhofer F, Zabel M, Mackensen A (2003) Communities and microhabitats of living benthic foraminifera from the Tropical East Atlantic: impact of different productivity regimes. J Foraminifer Res 33:10–31Google Scholar
  115. Lopez E (1979) Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol 53:201–211Google Scholar
  116. Mackensen A, Douglas RG (1989) Down-core distribution of live and dead deep-water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland. Deep Sea Res A 36:879–900Google Scholar
  117. Mackensen A, Hubberten H-W, Bickert T, Fischer G, Futterer DK (1993) The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water; implications for glacial ocean circulation models. Paleoceanography 8:587–610Google Scholar
  118. Mackensen A, Schumacher S, Radke J, Schmidt D (2000) Microhabitat preferences and stable carbon isotopes of endobenthic foraminifera: clue to quantitative reconstruction of oceanic new production? Mar Micropaleontol 40:233–258Google Scholar
  119. McCorkle DC, Emerson SR (1988) The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochim Cosmochim Acta 52:1169–1178Google Scholar
  120. McCorkle DC, Emerson SR, Quay PD (1985) Stable carbon isotopes in marine porewaters. Earth Planet Sci Lett 74:13–26Google Scholar
  121. McCorkle DC, Keigwin LD, Corliss BH, Emerson SR (1990) The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5:161–185Google Scholar
  122. McCorkle DC, Corliss BH, Farnham CA (1997) Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Res 1 Oceanogr Res Pap 44:983–1024Google Scholar
  123. McGann M (2002) Historical and modern distributions of benthic foraminifers on the continental shelf of Monterey Bay, California. Mar Geol 181:115–156Google Scholar
  124. McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol 62:954–958PubMedGoogle Scholar
  125. Mojtahid M, Jorissen F, Pearson TH (2008) Comparison of benthic foraminiferal and macrofaunal responses to organic pollution in the Firth of Clyde (Scotland). Mar Pollut Bull 56:42–76PubMedGoogle Scholar
  126. Mojtahid M, Griveaud C, Fontanier C, Anschutz P, Jorissen FJ (2010) Live benthic foraminiferal faunas along a bathymetrical transect (140–4800 m) in the Bay of Biscay (NE Atlantic). Rev Micropaleontol 53:139–162Google Scholar
  127. Molin D, Guidoboni E, Lodovisi A (1992) Muscilage and the phenomena of algae in the history of the Adriatic: Periodization and the anthropic context (17th-20th centuries). Sci Total Environ 511–524Google Scholar
  128. Moodley L (1990) Southern North Sea seafloor and subsurface distribution of living benthic foraminifera. Neth J of Sea Res 27:57–71Google Scholar
  129. Moodley L, Hess C (1992) Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol Bull 183:94–98Google Scholar
  130. Moodley L, Van Der Zwaan GJ, Herman PMJ, Kempers L, Van Breugel P (1997) Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar Ecol Prog Ser 158:151–163Google Scholar
  131. Moodley L, Schaub BEM, Van Der Zwaan GJ, Hermanl PMJ (1998a) Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Mar Ecol Prog Ser 169:77–86Google Scholar
  132. Moodley L, van der Zwaan GJ, Rutten GMW, Boom RCE, Kempers AJ (1998b) Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleontol 34:91–106Google Scholar
  133. Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, De Deckere E, Heip CHR (2000) Ecological significance of benthic foraminifera: 13C Labelling experiments. Mar Ecol Prog Ser 202:289–295Google Scholar
  134. Moodley L, Middelburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol Prog Ser 236:23–29Google Scholar
  135. Muller-Karger FE, Varela R, Thunell R, Luerssen R, Hu CM, Walsh JJ (2005) The importance of continental margins in the global carbon cycle. Geophys Res Lett 32. doi:10.1029/2004GL021346Google Scholar
  136. Murray JW (1992) Distribution and population dynamics of benthic foraminifera from the southern North Sea. J Foraminifer Res 22:114–128Google Scholar
  137. Murray JW (2003) An illustrated guide to the benthic foraminifera of the Hebridean shelf, west of Scotland, with notes on their mode of life. Palaeontol Electron 5(1), 31 ppGoogle Scholar
  138. Ní Fhlaithearta S, Reichart G-J, Jorissen FJ, Fontanier C, Rohling EJ, Thomson J, de Lange GJ (2010) Reconstructing the sea floor environment during sapropel formation using trace metals and sediment composition. Paleoceanography 25(4). doi:10.1029/2009PA001869Google Scholar
  139. Nomaki H, Ohkouchi N, Heinz P, Suga H, Chikaraishi Y, Ogawa NO, Matsumoto K, Kitazato H (2009) Degradation of algal lipids by deep-sea benthic foraminifera: an in situ tracer experiment. Deep-Sea Res I 56:1488–1503Google Scholar
  140. Nordberg K, Gustafsson M, Krantz AL (2000) Decreasing oxygen concentrations in the Gullmar Fjord, Sweden, as confirmed by benthic foraminifera, and possible association with NAO. J Mar Syst 23:303–316Google Scholar
  141. Nordberg K, Filipsson HL, Linné P, Gustafsson M (2009) Stable oxygen and carbon isotope information on the establishment of a new, opportunistic foraminiferal fauna in a Swedish Skagerrak fjord basin, in 1979/1980. Mar Micropaleontol 73:117–128Google Scholar
  142. Ohga T, Kitazato H (1997) Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan). Terra Nova 9:33–37Google Scholar
  143. Osterman LE (2003) Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: an indicator of shelf hypoxia. Estuar Coast Shelf Sci 58:17–35Google Scholar
  144. Osterman LE, Poore RZ, Swarzenski PW, Turner RE (2005) Reconstructing a 180 yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments. Geology 33:329–332Google Scholar
  145. Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157PubMedGoogle Scholar
  146. Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113–128Google Scholar
  147. Pawlowski J, Bolivar I, Farhni J, Zaninetti L (1995) DNA analysis of Ammonia beccarii morphotypes: one or more species? Mar Micropaleontol 26:171–178Google Scholar
  148. Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysgaard S, Risgaard-Petersen N (2010a) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. PNAS 107:1148–1153PubMedGoogle Scholar
  149. Piña-Ochoa E, Koho KA, Geslin E, Risgaard-Petersen N (2010b) Survival and life strategy of foraminifer, Globobulimina turgida, through nitrate storage and denitrification: laboratory experiments. Mar Ecol Prog Ser 417:39–49Google Scholar
  150. Platon E, Sen Gupta BK (2001) Benthic foraminiferal communities in oxygen-depleted environments of the Louisiana continental shelf. Coast Hyp: Conseq for Living Resour Ecosyst 58:147–163Google Scholar
  151. Platon E, Sen Gupta BK, Rabalais NN, Turner RE (2005) Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record. Mar Micropaleontol 54:263–283Google Scholar
  152. Pucci F, Geslin E, Barras C, Morigi C, Sabbatini A, Negri A, Jorissen FJ (2009) Survival of benthic foraminifera under hypoxic conditions: results of an experimental study using the Cell Tracker Green method. Mar Pollut Bull 59:336–351PubMedGoogle Scholar
  153. Qvale G, Nigam R (1985) Bolivina skagerrakensis, a new name for Bolivina cf. B. robusta, with notes on its ecology and distribution. J Foraminifer Res 15:6–12Google Scholar
  154. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619Google Scholar
  155. Rathburn AE, Corliss BH (1994) The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea. Paleoceanography 9:87–150Google Scholar
  156. Rathburn AE, Corliss BH, Tappa KD, Lohmann KC (1996) Comparison of ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas. Deep-Sea Res I 43:1617–1646Google Scholar
  157. Reichart G-J, Jorissen F, Anschutz P, Mason PRD (2003) Single foraminiferal test chemistry records the marine environment. Geology 31:355–358Google Scholar
  158. Reiter M (1959) Seasonal variations in intertidal foraminifera of Santa-Monica Bay, California. J paleontol 33:606–631Google Scholar
  159. Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op Den Camp HJM, Derksen JWM, Piña-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, Van Der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96PubMedGoogle Scholar
  160. Schmiedl G, De Bovée F, Buscail R, Charrière B, Hemleben C, Medernach L, Picon P (2000) Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar Micropaleontol 40:167–188Google Scholar
  161. Schmiedl G, Pfeilsticker M, Hemleben C, Mackensen A (2004) Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera from the western Mediterranean Sea. Mar Micropaleontol 51:129–152Google Scholar
  162. Schönfeld J (1997) The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Mar Micropaleontol 29:211–236Google Scholar
  163. Schönfeld J (2001) Benthic foraminifera and pore-water oxygen profiles: a re-assessment of species boundary conditions at the western Iberian Margin. J Foraminifer Res 31:86–107Google Scholar
  164. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in namibian shelf sediments. Science 284:493–495PubMedGoogle Scholar
  165. Schumacher S, Jorissen FJ, Dissard D, Larkin KE, Gooday AJ (2007) Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Mar Micropaleontol 62:45–73Google Scholar
  166. Scott GA, Scourse JD, Austin WEN (2003) The distribution of benthic foraminifera in the Celtic Sea: the significance of seasonal stratification. J Foraminifer Res 33:32–61Google Scholar
  167. Sen Gupta BK (1999) Introduction to modern foraminifera. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic Publishers, DordrechtGoogle Scholar
  168. Sen Gupta BK, Hayes WB (1979) Recognition of Holocenic benthic foraminiferal facies by recurrent group analysis. J Foraminifer Res 9:233–245Google Scholar
  169. Sen Gupta BK, Turner RE, Rabalais NN (1996) Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology 24:227–230Google Scholar
  170. Sergeeva NG, Anikeeva OV, Gooday AJ (2010) Soft-shelled, monothalamous foraminifera from the oxic/anoxic interface (NW Black Sea). Micropaleontology 56:393–407Google Scholar
  171. Silva KA, Corliss B, Rathburn AE, Thunell R (1996) Seasonality of living benthic foraminifera from San Pedro basin, California borderland. J Foraminifer Res 26:71–93Google Scholar
  172. Smith PB (1964) Ecology of benthonic species: recent foraminifera off Central America. US Geol Surv Prof Pap 429B:1–51Google Scholar
  173. Suhr SB, Pond DW (2006) Antarctic benthic foraminifera facilitate rapid cycling of phytoplankton-derived organic carbon. Deep-Sea Res II 53:895–902Google Scholar
  174. Takata H, Murakami S, Seto K, Sakai S, Tanaka S, Takayasu K (2003) Foraminiferal assemblages in Aso-Kai Lagoon, central Japan. Laguna 10:113–118 (in Japanese with English abstract)Google Scholar
  175. Tapia R, Lange CB, Marchant M (2008) Living (stained) calcareous benthic foraminifera from recent sediments off Concepcion, central-southern Chile (similar to 36 degrees S). Rev Chil Hist Nat 81:403–416Google Scholar
  176. Tielens AGM, Rotte C, Van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572PubMedGoogle Scholar
  177. Tomasino MG (1996) Is it feasible to predict ‘slime blooms’ or ‘mucilage’ in the northern Adriatic Sea? Ecol Model 84:189–198Google Scholar
  178. Travis JL, Bowser SS (1986) Microtubule-dependent reticulopodial motility: is there a role for actin? Cell Motil. Cytoskeleton 6:146–152Google Scholar
  179. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32Google Scholar
  180. Tsuchiya M, Grimm GW, Heinz P, Stögerer K, Ertan KT, Collen J, Brüchert V, Hemleben C, Hemleben V, Kitazato H (2009) Ribosomal DNA shows extremely low genetic divergence in a world-wide distributed, but disjunct and highly adapted marine protozoan (Virgulinella fragilis, Foraminiferida). Mar Micropaleontol 70:8–19Google Scholar
  181. Turner RE, Rabalais NN (1994) Coastal eutrophication near the Mississippi river delta. Nature 368:619–621Google Scholar
  182. Van Der Weijden CH, Reichart GJ, Visser HJ (1999) Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep-Sea Res I 46:807–830Google Scholar
  183. Verhallen PJ (1991) Late Pliocene to Early Pleistocene Mediterranean mud-dwelling foraminifera; influence of a changing environment of community structure and evolution. Utrecht Micropaleontol Bull 40:1–219Google Scholar
  184. Walton WR (1955) Ecology of living benthonic foraminifera, Todos Santos Bay area, Baja California. J Paleontol 29:952–1018Google Scholar
  185. Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766PubMedGoogle Scholar
  186. Woulds C, Cowie GL, Levin LA, Andersson JH, Middelburg JJ, Vandewiele S, Lamont PA, Larkin KE, Gooday AJ, Schumacher S, Whitcraft C, Jeffreys RM, Schwartz M (2007) Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling. Limnol Oceanogr 52:1698–1709Google Scholar
  187. Zaninetti L (1984) Les foraminifers du salin de Bras del Port (Santa Pola, Espagne) avec remarques sur le distribution des ostracodes. Revista d’investigacions geologiques 38(39):123–138Google Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Center for Geomicrobiology, Institute of Biological SciencesAarhus UniversityAarhusDenmark

Personalised recommendations