Abstract
Tardigrades, which are tiny invertebrate animals, have been considered as an appropriate model for astrobiological studies based on their high survival ability under various types of environmental stresses. So far, researches have shown that tardigrades have high tolerance to ionizing radiation, wide ranges of temperatures, vacuum, and high pressures in anhydrobiosis, a state that organisms lack free water in the body, and they resume activity when water is added. In addition, recently, a short-term flight experiment demonstrated that tardigrades in an anhydrobiotic state survived open space environments at low Earth orbit. Results from those exposure experiments indicate that tardigrades are well tolerant of extremely low temperatures, vacuum, and high pressures. On the other hand, ionizing radiation, UV radiation, and high temperatures could be the critical factors to limit habitable environments for tardigrades. Future astrobiological research on tardigrades, such as long-term exposure experiments, might provide important insight into the possibilities of existence of animal-like life forms or interplanetary transfer of multicellular organisms in an anhydrobiotic state.
Keywords
- Hydrated State
- Late Embryogenesis Abundant
- High Hydrostatic Pressure
- Flight Experiment
- Space Vacuum
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453
Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584
Altiero T, Rebecchi L (2001) Rearing tardigrades: results and problems. Zool Anz 240:217–221
Becquerel P (1950) La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l’alun de fer dans le vide les plus eléve. C R hebd Séances Acad Sci Paris 231:261–263
Bertolani R (1970) Mitosi somatische e constanza cellulare numerica nei Tardigradi. Atti Accad Naz Lincei Rend Ser 8a:739–742
Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975
Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292
Clegg JS (1962) Free glycerol in dormant cysts of the brine shrimp, Artemia salina, and its disappearance during development. Biol Bull 122:295–301
Crowe JH (1972) Evaporative water loss by tardigrades under controlled relative humidities. Biol Bull 142:407–416
Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10
Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–779
Denekamp NY, Thorne MA, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108
Diaz B, Schulze-Makuch D (2006) Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV–irradiation conditions, and their relevance to possible martian life. Astrobiology 6:332–347
Doyère PLN (1842) Memories sur les tardigrades. Sur le facilité que possedent les tardigrades, les rotifers, les anguillules des toits et quelques autres of animalcules, de revenir à la vie après été completement déssechées. Ann Sci Nat (Ser 2) 18:5
Ducoff HS (1972) Causes of death in irradiated adult insects. Biol Rev 47:211–240
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749
Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf stable biologicals. Pharm Technol Int 3:24–34
Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559
Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool 257:181–187
Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307A:62–66
Hengherr S, Heyer AG, Köhler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades–evidence for divergence in responses to dehydration. FEBS J 275:281–288
Horikawa DD, Higashi S (2004) Desiccation tolerance of the tardigrade Milnesium tardigradum collected in Sapporo, Japan, and Bogor. Indonesia Zool Sci 21:813–816
Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848
Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Sakashita T, Hamada N, Wada S, Funayama T, Kobayashi Y, Katagiri C, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556
Horikawa DD, Iwata K, Kawai K, Koseki S, Okuda T, Yamamoto K (2009) High hydrostatic pressure tolerance of four different anhydrobiotic animal species. Zool Sci 26:238–242
Horneck G (1999) Astrobiology studies of microbes in simulated interplanetary space. In: Ehrenfreund P, Krafft C, Kochan H, Pirronello V (eds) Laboratory astrophysics and space research. Springer, Berlin, pp 667–686
Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution of planet earth. Academic, Amsterdam, pp 109–127
Iwasaki T (1964) Sensitivity of Artemia eggs to the gamma-irradiation. III. The sensitivity and the duration of hydration. J Radiat Res 5:91–96
Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, White L, Radtke K, Chan E, Tronnick S, Borgonie G, Mancinelli R, Rotshchild L, Rogoff D, Horikawa DD, Onstott TC (2011) Extended survival of several microorganisms and relevant amino acid and biomarkers under simulated Martian surface conditions as a function of burial depth. Icarus 211:1162–1178
Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766
Jönsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade Richtersius coronifer. Int J Radiat Biol 81:649–656
Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731
Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191
Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of late-embryogenesis abundant proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61
Krisko A, Radman M (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. PNAS 107:14373–14377
Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390
Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342
Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637
May RM, Maria M, Guimard J (1964) Action différentielle des rayons x et ultraviolets sur le tardigrade Macrobiotus areolatus, a l’état actif et desséché. Bull Biol Fr Belg 98:349–367
Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A 153:425–429
Ono F, Saigusa M, Uozumi T, Matsushima Y, Ikeda H, Saini NL, Yamashita M (2008) Effect of high hydrostatic pressure on a life of a tiny animal tardigrade. J Phys Chem Solids 69:2297–2300
Pigon A, Weglarska B (1955) Rate of metabolism in tardigrades during active life and anabiosis. Nature 176:121–122
Rahm PG (1921) Biologische und physiologische Beiträge zur Kenntnis de Moosfauna. Z allgem Physiol 20:1–35
Ramløv H, Westh P (1992) Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to −196°C: effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology 29:125–130
Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523
Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009a) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9:581–591
Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009b) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039
Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101
Sakurai M, Furuki T, Akao K-i, Tanaka D, Nakara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. PNAS 105:5093–5098
Schokraie E, Hotz-Wagenblatt A, Warnken U, Mail B, Förster F, Dandekar T, Hengherr S, Schill RO, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502
Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854
Suzuki AC (2003) Life history of Milnesium tardigradum Doyère (Tardigrada) under a rearing environment. Zool Sci 20:49–57
Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31
Watanabe M, Kikawada T, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802
Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286
Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592
Westh P, Ramløv H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311
Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17
Wright JC (1989) Desiccation tolerance and water-retentive mechanisms in tardigrades. J Exp Biol 142:267–292
Yoshinaga K, Yoshioka H, Kurosaki H, Hirasawa K, Uritani M, Hasegawa M (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotechnol Biochem 61:160–161
Acknowledgments
I thank Lynn J. Rothschild and John Cumbers from NASA Ames Research Center for providing research advice on my studies. I also thank the NASA Astrobiology Institute Postdoctoral Program for supporting my research project at NASA Ames Research Center.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Horikawa, D.D. (2012). Survival of Tardigrades in Extreme Environments: A Model Animal for Astrobiology. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_12
Download citation
DOI: https://doi.org/10.1007/978-94-007-1896-8_12
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-1895-1
Online ISBN: 978-94-007-1896-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)