Skip to main content
Book cover

Anoxia pp 205–217Cite as

Survival of Tardigrades in Extreme Environments: A Model Animal for Astrobiology

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE,volume 21)

Abstract

Tardigrades, which are tiny invertebrate animals, have been considered as an appropriate model for astrobiological studies based on their high survival ability under various types of environmental stresses. So far, researches have shown that tardigrades have high tolerance to ionizing radiation, wide ranges of temperatures, vacuum, and high pressures in anhydrobiosis, a state that organisms lack free water in the body, and they resume activity when water is added. In addition, recently, a short-term flight experiment demonstrated that tardigrades in an anhydrobiotic state survived open space environments at low Earth orbit. Results from those exposure experiments indicate that tardigrades are well tolerant of extremely low temperatures, vacuum, and high pressures. On the other hand, ionizing radiation, UV radiation, and high temperatures could be the critical factors to limit habitable environments for tardigrades. Future astrobiological research on tardigrades, such as long-term exposure experiments, might provide important insight into the possibilities of existence of animal-like life forms or interplanetary transfer of multicellular organisms in an anhydrobiotic state.

Keywords

  • Hydrated State
  • Late Embryogenesis Abundant
  • High Hydrostatic Pressure
  • Flight Experiment
  • Space Vacuum

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-1896-8_12
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-1896-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Figure 1.

References

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    PubMed  CrossRef  CAS  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    PubMed  CrossRef  Google Scholar 

  • Altiero T, Rebecchi L (2001) Rearing tardigrades: results and problems. Zool Anz 240:217–221

    CrossRef  Google Scholar 

  • Becquerel P (1950) La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l’alun de fer dans le vide les plus eléve. C R hebd Séances Acad Sci Paris 231:261–263

    Google Scholar 

  • Bertolani R (1970) Mitosi somatische e constanza cellulare numerica nei Tardigradi. Atti Accad Naz Lincei Rend Ser 8a:739–742

    Google Scholar 

  • Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975

    PubMed  CrossRef  CAS  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    PubMed  CrossRef  CAS  Google Scholar 

  • Clegg JS (1962) Free glycerol in dormant cysts of the brine shrimp, Artemia salina, and its disappearance during development. Biol Bull 122:295–301

    CrossRef  Google Scholar 

  • Crowe JH (1972) Evaporative water loss by tardigrades under controlled relative humidities. Biol Bull 142:407–416

    CrossRef  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–779

    CrossRef  CAS  Google Scholar 

  • Denekamp NY, Thorne MA, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108

    PubMed  CrossRef  Google Scholar 

  • Diaz B, Schulze-Makuch D (2006) Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV–irradiation conditions, and their relevance to possible martian life. Astrobiology 6:332–347

    PubMed  CrossRef  CAS  Google Scholar 

  • Doyère PLN (1842) Memories sur les tardigrades. Sur le facilité que possedent les tardigrades, les rotifers, les anguillules des toits et quelques autres of animalcules, de revenir à la vie après été completement déssechées. Ann Sci Nat (Ser 2) 18:5

    Google Scholar 

  • Ducoff HS (1972) Causes of death in irradiated adult insects. Biol Rev 47:211–240

    PubMed  CrossRef  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    PubMed  CrossRef  CAS  Google Scholar 

  • Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf stable biologicals. Pharm Technol Int 3:24–34

    Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    PubMed  CrossRef  CAS  Google Scholar 

  • Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool 257:181–187

    CrossRef  Google Scholar 

  • Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307A:62–66

    CrossRef  CAS  Google Scholar 

  • Hengherr S, Heyer AG, Köhler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades–evidence for divergence in responses to dehydration. FEBS J 275:281–288

    PubMed  CrossRef  CAS  Google Scholar 

  • Horikawa DD, Higashi S (2004) Desiccation tolerance of the tardigrade Milnesium tardigradum collected in Sapporo, Japan, and Bogor. Indonesia Zool Sci 21:813–816

    Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848

    PubMed  CrossRef  CAS  Google Scholar 

  • Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Sakashita T, Hamada N, Wada S, Funayama T, Kobayashi Y, Katagiri C, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556

    PubMed  CrossRef  CAS  Google Scholar 

  • Horikawa DD, Iwata K, Kawai K, Koseki S, Okuda T, Yamamoto K (2009) High hydrostatic pressure tolerance of four different anhydrobiotic animal species. Zool Sci 26:238–242

    PubMed  CrossRef  Google Scholar 

  • Horneck G (1999) Astrobiology studies of microbes in simulated interplanetary space. In: Ehrenfreund P, Krafft C, Kochan H, Pirronello V (eds) Laboratory astrophysics and space research. Springer, Berlin, pp 667–686

    CrossRef  Google Scholar 

  • Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution of planet earth. Academic, Amsterdam, pp 109–127

    CrossRef  Google Scholar 

  • Iwasaki T (1964) Sensitivity of Artemia eggs to the gamma-irradiation. III. The sensitivity and the duration of hydration. J Radiat Res 5:91–96

    CrossRef  Google Scholar 

  • Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, White L, Radtke K, Chan E, Tronnick S, Borgonie G, Mancinelli R, Rotshchild L, Rogoff D, Horikawa DD, Onstott TC (2011) Extended survival of several microorganisms and relevant amino acid and biomarkers under simulated Martian surface conditions as a function of burial depth. Icarus 211:1162–1178

    CrossRef  CAS  Google Scholar 

  • Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766

    PubMed  CrossRef  Google Scholar 

  • Jönsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade Richtersius coronifer. Int J Radiat Biol 81:649–656

    PubMed  CrossRef  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    PubMed  CrossRef  Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191

    PubMed  CrossRef  CAS  Google Scholar 

  • Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of late-embryogenesis abundant proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

    PubMed  CrossRef  CAS  Google Scholar 

  • Krisko A, Radman M (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. PNAS 107:14373–14377

    PubMed  CrossRef  CAS  Google Scholar 

  • Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390

    PubMed  CrossRef  CAS  Google Scholar 

  • Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342

    CrossRef  CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • May RM, Maria M, Guimard J (1964) Action différentielle des rayons x et ultraviolets sur le tardigrade Macrobiotus areolatus, a l’état actif et desséché. Bull Biol Fr Belg 98:349–367

    Google Scholar 

  • Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A 153:425–429

    CrossRef  Google Scholar 

  • Ono F, Saigusa M, Uozumi T, Matsushima Y, Ikeda H, Saini NL, Yamashita M (2008) Effect of high hydrostatic pressure on a life of a tiny animal tardigrade. J Phys Chem Solids 69:2297–2300

    CrossRef  CAS  Google Scholar 

  • Pigon A, Weglarska B (1955) Rate of metabolism in tardigrades during active life and anabiosis. Nature 176:121–122

    PubMed  CrossRef  CAS  Google Scholar 

  • Rahm PG (1921) Biologische und physiologische Beiträge zur Kenntnis de Moosfauna. Z allgem Physiol 20:1–35

    Google Scholar 

  • Ramløv H, Westh P (1992) Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to −196°C: effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology 29:125–130

    CrossRef  Google Scholar 

  • Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523

    CrossRef  Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009a) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9:581–591

    PubMed  CrossRef  CAS  Google Scholar 

  • Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009b) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039

    PubMed  CrossRef  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    PubMed  CrossRef  CAS  Google Scholar 

  • Sakurai M, Furuki T, Akao K-i, Tanaka D, Nakara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. PNAS 105:5093–5098

    PubMed  CrossRef  CAS  Google Scholar 

  • Schokraie E, Hotz-Wagenblatt A, Warnken U, Mail B, Förster F, Dandekar T, Hengherr S, Schill RO, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502

    PubMed  CrossRef  Google Scholar 

  • Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854

    CrossRef  CAS  Google Scholar 

  • Suzuki AC (2003) Life history of Milnesium tardigradum Doyère (Tardigrada) under a rearing environment. Zool Sci 20:49–57

    PubMed  CrossRef  Google Scholar 

  • Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31

    CrossRef  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    PubMed  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286

    PubMed  CrossRef  CAS  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592

    PubMed  CrossRef  CAS  Google Scholar 

  • Westh P, Ramløv H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311

    CrossRef  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    PubMed  CrossRef  CAS  Google Scholar 

  • Wright JC (1989) Desiccation tolerance and water-retentive mechanisms in tardigrades. J Exp Biol 142:267–292

    Google Scholar 

  • Yoshinaga K, Yoshioka H, Kurosaki H, Hirasawa K, Uritani M, Hasegawa M (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotechnol Biochem 61:160–161

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

I thank Lynn J. Rothschild and John Cumbers from NASA Ames Research Center for providing research advice on my studies. I also thank the NASA Astrobiology Institute Postdoctoral Program for supporting my research project at NASA Ames Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki D. Horikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Horikawa, D.D. (2012). Survival of Tardigrades in Extreme Environments: A Model Animal for Astrobiology. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_12

Download citation