Skip to main content

Current Status of Time Series Analysis in Hydrological Sciences

  • Chapter
Hydrologic Time Series Analysis: Theory and Practice

Abstract

Time series analysis has been successfully applied in the fields like geology, ocean engineering, seismology, hydrology, climatology, etc. The hydrological and climatological time series studies have been carried out for analyzing the historic rainfall data (e.g., Henderson, 1989; De Michele et al., 1998; Mirza et al., 1998; Pagliara et al., 1998; Abaurrea and Cebrian, 2003; Pugacheva et al., 2003; Astel et al., 2004), streamflow data (Avinash and Ghanshyam, 1988; Capodaglio and Moisello, 1990; Radziejewski et al., 2000; Fanta et al., 2001; Adeloye and Montaseri, 2002; Chen and Rao, 2002), flood data (Grew and Werrity, 1995; Changnon and Kunkel, 1995; Westmacott and Burn, 1997; Robson et al., 1998; Reed et al., 1999; Lins and Slack, 1999; Loukas and Quick, 1996, 1999; Cayan et al., 1999; Jain and Lall, 2001; Douglas et al., 2000; Adamowski and Bocci, 2001; Zhang et al., 2001; Cunderlik and Burn, 2002), infiltration data (Schwankl et al., 2000), and surface water quality data (Jayawardena and Lai, 1989; Higashino et al., 1999) as well as for generating synthetic rainfall data in semi-arid regions (Janos et al., 1988), determining water consumption patterns (Maidment and Parzen, 1984), detecting trends in evapotranspiration and wind speed (Hameed et al., 1997; Raghuwanshi and Wallender, 1997), and for detecting climate change or variability (Kite, 1989; Khan, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abaurrea, J. and Cebrian, A. (2003). Trend analysis of daily rainfall extremes. http://www.isi-eh.usc.es/resumenes/127_52_abstract.pdf (accessed on 27 July 2003).

  • Adamowski, K. and Bocci, C. (2001). Geostatistical regional trend detection in river flow data. Hydrological Processes , 15: 3331-3341.

    Article  Google Scholar 

  • Adamowski, K. and Bougadis, J. (2003). Detection of trends in annual extreme rainfall. Hydrological Processes , 17(18): 3547-3560.

    Article  Google Scholar 

  • Adeloye, A.J. and Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resources planning study. Hydrological Sciences Journal , 47(5): 679-692.

    Article  Google Scholar 

  • Alemaw, B.F. and Chaoka, T.R. (2002). Trends in the flow regime of the southern African rivers as visualized from rescaled adjusted partial sums (RAPS). African Journal of Science and Technology , Science and Engineering Series , 3(1): 69-78.

    Google Scholar 

  • Anderson, P.L., Meerschaert, M.M. and Vecchia, A.V. (1999). Innovations algorithm for periodically stationary time series. Stochastic Processes and their Applications, 83(1): 149-169.

    Article  Google Scholar 

  • Angel, J.R. and Huff, F.A. (1997). Changes in heavy rainfall in Midwestern United States. Journal of Water Resources Planning and Management, ASCE, 123(4): 246-249.

    Article  Google Scholar 

  • Anh, V., Lunney, K. and Peiris, S. (1997). Stochastic models for characterisation and prediction of time series with long-range dependence and fractality. Environmental Modelling and Software, 12(1): 67-73.

    Article  Google Scholar 

  • Antonopoulos, V.Z., Papamichail, D.M. and Mitsiou, K.A. (2001). Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrology and Earth System Sciences, 5(4): 679-691.

    Article  Google Scholar 

  • Astatkie, T., Yiridoe, E.K. and Clark, J.S. (2003). Testing for trend in variability of climate data: Measures and temporal aggregation with applications to Canadian data. Theoretical and Applied Climatology, 76(3-4): 235-247.

    Article  Google Scholar 

  • Astel, A., Mazerski, J., Polkowska, Z. and Namiesnik, J. (2004). Application of PCA and time series analysis in studies of precipitation in Tricity (Poland). Advances in Environmental Research, 8(3-4): 337-349.

    Article  Google Scholar 

  • Aulenbach, B.T., Hooper, R.P. and Bricker, O.P. (1996). Trends in the chemistry of precipitation and surface water in a national network of small watersheds. Hydrological Processes , 10(2): 151-181.

    Article  Google Scholar 

  • Avinash, A. and Ghanshyam, D. (1988). Time series model of stream flow for a catchment of Ramganga River. Journal of Institution of Engineers (India), Civil Engineering Division , 88(Part CI): 228-230.

    Google Scholar 

  • Beighley, E. and Moglen, G.E. (2002). Trend assessment in rainfall-runoff behavior in urbanizing watersheds. Journal of Hydrologic Engineering, ASCE , 7(1): 27-34.

    Article  Google Scholar 

  • Bhuiya, R.K. (1971). Stochastic analysis of periodic hydrologic process. Journal of the Hydraulics Division, ASCE, 97(HY 7): 949-962.

    Google Scholar 

  • Bírsan, M.-V., Molnar, P. and Burlando, P. (2002). Streamflow trends in Switzerland. Proceedings of the PHEFRA Workshop, Barcelona, October 16-19, 2002. http:// www.ccma.csic.es/dpts/suelos/hidro/phefra/images/chapter_ 38_phefra.pdf (accessed on 27 January 2004).

  • Boroneant, C., Cazacioc, L. and Gologus, L. (1995). Short time climatic change in precipitation regime. Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http://www.cyf-kr.edu.pl/ ~ziniedzw/paper015.html (accessed on 30 January 2004).

  • Brázdil, R. and Stepánek, P. (1995). Homogenized air temperature and precipitation series of Brno in 1848-1993. Proceedings of the Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http:/ / www.cyf-kr.edu.pl/~ziniedzw/paper019.html (accessed on 30 January 2004).

  • Brunetti, M., Buffoni, L., Maugeri, M. and Nanni, T. (2000). Precipitation intensity trends in northern Italy. International Journal of Climatology, 20(9): 1017-1031.

    Article  Google Scholar 

  • Brunetti, M., Maugeri, M. and Nanni, T. (2001). Changes in total precipitation, rainy days and extreme events in northeastern Italy. International Journal ofClimatology, 21(7): 861-871.

    Article  Google Scholar 

  • Buishand, T.A. (1979). Urbanization and changes in precipitation, a statistical approach. Journal of Hydrology, 40(3-4): 365-375.

    Article  Google Scholar 

  • Buishand, T.A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58: 11-27.

    Article  Google Scholar 

  • Buishand, T.A. (1984). Tests for detecting a shift in the mean of hydrological time series. Journal of Hydrology, 73: 51-69.

    Article  Google Scholar 

  • Burn, D.H. (1994). Hydrologic effects of climatic change in west-central Canada. Journal of Hydrology, 160(1-4): 53-70.

    Article  Google Scholar 

  • Burn, D.H. and Elnur, M.A.H. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255(1-4): 107-122.

    Article  Google Scholar 

  • Burn, D.H., Fan, L. and Bell, G. (2008). Identification and quantification of streamflow trends on the Canadian Prairies. Hydrological Sciences Journal, 53(3): 538-549.

    Article  Google Scholar 

  • Capodaglio, A.G. and Moisello, U. (1990). Simple stochastic model for annual flows. Journal of Water Resources Planning and Management, ASCE, 116(2): 220-232.

    Article  Google Scholar 

  • Cayan, D.R., Redmond, K.T. and Riddle, L.G. (1999). ENSO and hydrologic extremes in the western United States. Journal of Climate, 12: 2881-2893.

    Article  Google Scholar 

  • Cehak, K. (1979). On flood probabilities of East Alpine rivers. Journal of Hydrology, 20(1): 65-82.

    Article  Google Scholar 

  • Chang, T.J. (1988). Stochastic forecast of water losses. Journal of Irrigation and Drainage Engineering, ASCE, 114(3): 547-558.

    Article  Google Scholar 

  • Changnon, S.A. and Kunkel, K.E. (1995). Climate-related fluctuation in Midwestern floods during 1921-1985. Journal of Water Resources Planning and Management, ASCE, 121(4): 326-334.

    Article  Google Scholar 

  • Charvátová, I. (1995). Climatic changes and solar inertial motion. Proceedings of the Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http://www.cyf-kr.edu.pl/~ziniedzw/paper023.html (accessed on 30 January 2004).

  • Chen, H.-L. and Rao, A.R. (2002). Testing hydrologic time series for stationarity. Journal of Hydrologic Engineering, ASCE, 7(2): 129-136.

    Article  Google Scholar 

  • Clarke, R.T. (2002). Fitting and testing the significance of linear trends in Gumbel- distributed data. Hydrology and Earth System Sciences, 6(1): 17-24.

    Article  Google Scholar 

  • Coulibaly, P. and Baldwin, C.K. (2005). Nonstationary hydrological time series forecasting using nonlinear dynamic methods. Journal of Hydrology, 307(1-4): 164-174.

    Article  Google Scholar 

  • Cunderlik, J.M. and Burn, D.H. (2002). Local and regional trends in monthly maximum flows in southern British Columbia. Canadian Water Resources Journal, 27(2): 191-212.

    Article  Google Scholar 

  • Darken , P.F., Holtzman, G.I., Smith, E.P. and Zipper, C.E. (2000). Detecting changes in trends in water quality using modified Kendall's tau. Environmetrics , 11(4): 423-434.

    Article  Google Scholar 

  • De Luís, M., Raventós, J., González-Hidalgo, J.C., Sánchez, J.R. and Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (east Spain). International Journal of Climatology, 20(12): 1451-1469.

    Article  Google Scholar 

  • De Michele, C., Montanari, A. and Rosso, R. (1998). The effects of non-stationarity on the evaluation of critical design storms. Water Science and Technology, 37(11): 187-193.

    Article  Google Scholar 

  • Douglas, E.M., Vogel, R.M. and Kroll, C.N. (2000). Trends in floods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, 240(1-2): 90-105.

    Article  Google Scholar 

  • Ducré-Robitaille, J., Vincent, L.A. and Boulet, G. (2003). Comparison of techniques for detection of discontinuities in temperature series. International Journal of Climatology, 23(9): 1087-1101.

    Article  Google Scholar 

  • El-Shaarawi, A.H., Esterby, S.R. and Kuntz, K.W. (1983). A statistical evaluation of trends in the water quality of the Niagara River. Journal of Great Lakes Research, 9: 234-240.

    Article  Google Scholar 

  • Esteban-Parra, M.J. and Castro-Diez, Y. (1995). On the homogeneity of the longest temperature series in Spain: a critical analysis. Proceedings of the Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http://www.cyf-kr.edu.pl/~ziniedzw/paper034.html (accessed on 30 January 2004).

  • Fanta, B., Zaake, B.T. and Kachroo, R.K. (2001). A study of variability of annual river flow of the southern African region. Hydrological Sciences Journal, 46(4): 513524.

    Article  Google Scholar 

  • Feng, X., Zhang, G. and Yin, X. (2011). Hydrological responses to climate change in Nenjiang river basin, northeastern China. Water Resources Management, 25: 677689.

    Article  Google Scholar 

  • Fortuniak, K. (1995). Periodicity of temperature and precipitation in Poland in the period 1956-1990. Conference on Climate Dynamics and the Global Change

    Google Scholar 

  • Perspective, Cracow, Poland, October 17-20, 1995. http://www.cyf-kr.edu.pl/ ~ziniedzw/paper037.html (accessed on 30 January 2004).

  • Gangyan, Z., Goel, N.K. and Bhatt, V.K. (2002). Stochastic modelling of the sediment load of the upper Yangtze River (China). Hydrological Sciences Journal, 47(S): S93-S105.

    Google Scholar 

  • Giakoumakis, S.G. and Baloutsos, G. (1997). Investigation of trend in hydrological time series of the Evinos River basin. Hydrological Sciences Journal, 42(1): 8188.

    Article  Google Scholar 

  • Grew, H. and Werrity, A. (1995). Changes in flood frequency and magnitude in Scotland. Proceedings of the BHS Fifth National Hydrology Symposium, Edinburgh, pp. 3.1-3.9.

    Google Scholar 

  • Gupta, R.K. and Chauhan, H.S. (1986). Stochastic modeling of irrigation requirements. Journal of Irrigation and Drainage Engineering, ASCE, 112(1): 65-76.

    Article  Google Scholar 

  • Hamed, K.H. and Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4): 182-196.

    Article  Google Scholar 

  • Hameed, T., Marino, M.A., DeVries, J.J. and Tracy J.C. (1997). Method for trend detection in climatological variables. Journal of Hydrologic Engineering, ASCE, 2(4): 154-160.

    Article  Google Scholar 

  • Harned, D.A. and Davenport, M.S. (1990). Water-quality Trends and Basin Activities and Characteristics for the Albemarle-Pamlico Estuarine System, North Carolina and Virginia. U.S. Geological Survey Open-File Report 90-398, 164 pp. http:// nc.water.usgs.gov /albe/pubs/APEStrends.html (accessed on 25 January 2004).

    Google Scholar 

  • Harned, D.A. and McMahon, G. (1997). Trends in surface water quality for the Contentnea Creek Basin, 1980-1996. Proceedings of the Albemarle-Pamlico Estuarine Study Comprehensive Conservation and Management Plan Implementation Forum, June 5-6. http://nc.water.usgs.gov/albe/pubs/APEScont.html (accessed on 25 January 2004).

  • Haywood, J. and Wilson, G.T. (2000). Selection and estimation of component models for seasonal time series. Journal of Forecasting, 19(5): 393-417.

    Article  Google Scholar 

  • Henderson, R.J. (1989). Rainfall time series for storm overflow assessment. Water Science and Technology, 21: 1789-1791.

    Google Scholar 

  • Higashino, M., Kanda, T. and Michioku, K. (1999). Time series analysis and transformation of water quality in an eutrophic reservoir. Mizu Kankyo Gakkaishi, 22(8): 668-676.

    Article  Google Scholar 

  • Hirsch, R.M. and Slack, J.R. (1984). Nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6): 727-732.

    Article  Google Scholar 

  • Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1): 107-121.

    Article  Google Scholar 

  • Hobbins, M.T., Ramirez, J.A. and Brown, T.C. (2001). Trends in regional evapotranspiration across the United States under the complementary relationship hypothesis. Hydrology Days 2001, pp. 106-121.

    Google Scholar 

  • Jain, S. and Lall, U. (2001). Floods in a changing climate: Does the past represent the future? Water Resources Research, 37(12): 3193-3205.

    Article  Google Scholar 

  • Janos, B., Lucien, D. and Omar, H.R. (1988). Practical generation of synthetic rainfall event time series in a semi-arid climatic zone. Journal of Hydrology, 103: 357-373.

    Article  Google Scholar 

  • Jassby, A.D., Reuter, J.E. and Goldman, C.R. (2003). Determining long-term water quality change in the presence of climate variability: Lake Tahoe (USA). Canadian Journal of Fisheries and Aquatic Sciences, 60(12): 1452-1461.

    Article  Google Scholar 

  • Jayawardena, A.W. and Lai, F. (1989). Time series analysis of water quality data in Pearl River, China. Journal of Environmental Engineering, ASCE, 115(3): 590607.

    Google Scholar 

  • Johann, G., Papadakis, I. and Pfister, A. (1998). Historical precipitation time series for applications in urban hydrology. Water Science and Technology, 37(11): 147-153.

    Article  Google Scholar 

  • Kadioglu, M. (1997). Trends in surface air temperature data over Turkey. International Journal of Climatology, 17(5): 511-520.

    Article  Google Scholar 

  • Kahya, E. and Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1-4): 128-144.

    Article  Google Scholar 

  • Kalayci, S. and Kahya, E. (1996). Detection of water quality trends in the rivers of the Susurluk Basin. Turkish Journal of Engineering and Environmental Sciences, 22(6): 503-514.

    Google Scholar 

  • Keiser, D.T. and Griffiths, J.F. (1998). Problems associated with homogeneity testing in climate variation studies: A case study of temperature in the northern Great Plains, USA. International Journal of Climatology, 17(5): 497-510.

    Article  Google Scholar 

  • Khaliq, M.N., Ouarda, T.B.M.J. and Gachon, P. (2009b). Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: The effect of short- and long-term persistence. Journal of Hydrology, 369 (1-2): 183-197.

    Article  Google Scholar 

  • Khaliq, M.N., Ouarda, T.B.M.J., Gachon, P., Sushama, L. and St-Hilaire, A. (2009a). Identification of hydrological trends in the presence of serial and cross correlations: Review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology, 368(1-4): 117-130.

    Article  Google Scholar 

  • Khan, A.R. (2001). Analysis of hydro-meteorological time series in the upper Indus basin: Searching evidence for climatic change. International Water Management Institute (IWMI), Working Paper 23, Pakistan Country Series Number 7, Colombo, Sri Lanka.

    Google Scholar 

  • Kim, J.-H., Lee, J., Cheong, T.-J., Kim, R.-H., Koh, D.-C., Ryu, J.-S. and Chang, H.W. (2005). Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, 300(1-4): 188-198.

    Article  Google Scholar 

  • Kite, G. (1989). Use of time series analyses to detect climatic change. Journal of Hydrology, 111: 259-279.

    Article  Google Scholar 

  • Knapp, H.V. (1994). Hydrologic trends in the Upper Mississippi River Basin. Water International, 19(4): 199-206.

    Article  Google Scholar 

  • Kothyari, U.C., Singh, V.P. and Aravamuthan, V. (1997). An investigation of changes in rainfall and temperature regimes of the Ganga basin in India. Water Resources Management, 11 (1): 17-34.

    Article  Google Scholar 

  • Kripalani, R.H. and Kulkarni, A. (2001). Monsoon rainfall variations and teleconnections over South and East Asia. International Journal of Climatology, 21(5): 603-616.

    Article  Google Scholar 

  • Kristev, L. and Koleva, E. (1995). Variation of the snow cover characteristics in mountain region of Bulgaria. Proceedings of the Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http:/ / www.cyf-kr.edu.pl/~ziniedzw/paper056.html (accessed on 30 January 2004).

  • Kumar, V., Jain, S.K. and Singh, Y. (2010). Analysis of long-term rainfall trends in India. Hydrological Sciences Journal, 55(4): 484-496.

    Article  Google Scholar 

  • Lee, J. and Lee, K. (2003). Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer. Environmental Pollution, 126(2): 201-212.

    Article  Google Scholar 

  • Lin, Y. and Lye, L.M. (1994). Modelling long-term dependence based on cumulative departures of annual flow series. Journal of Hydrology, 160(1-4): 105-121.

    Article  Google Scholar 

  • Lins, H.F. and Slack, J.R. (1999). Streamflow trends in the United States. Geophysical Research Letters, 26(2): 227-230.

    Article  Google Scholar 

  • Loaiciga, H.A., Maidment, D.R. and Valdes, J.B. (2000). Climate-change impacts in a regional karst aquifer, Texas, USA. Journal of Hydrology, 227(1): 173-194.

    Article  Google Scholar 

  • Loftis, J.C. (1996). Trends in groundwater quality. Hydrological Processes, 10(2): 335-355.

    Article  Google Scholar 

  • Loukas, A. and Quick, M.C. (1996). Effect of climate change on hydrologic regime of two climatically different watersheds. Journal of Hydrologic Engineering, ASCE, 1(2): 77-87.

    Article  Google Scholar 

  • Lubes-Niel, H., Masson, J.M., Paturel, J.E. and Servat, E. (1998). Climatic variability and statistics: A simulation approach for estimating power and robustness of tests of stationarity. Journal of Water Science, 11(3): 383-408 (in French).

    Google Scholar 

  • Ludwig, W., Serrat, P., Cesmat, L. and Garcia-Esteves, J. (2004). Evaluating the impact of the recent temperature increase on the hydrology of the Têt River (Southern France). Journal of Hydrology, 289(1-4): 204-221.

    Article  Google Scholar 

  • Lye, L.M. and Lin, Y. (1994). Long-term dependence in annual peak flows of Canadian rivers. Journal of Hydrology, 160(1-4): 89-103.

    Article  Google Scholar 

  • Machiwal, D. and Jha, M.K. (2006). Time series analysis of hydrologic data for water resources planning and management: A review. Journal of Hydrology and Hydromechanics, 54(3): 237-257.

    Google Scholar 

  • Machiwal, D. and Jha, M.K. (2008). Comparative evaluation of statistical tests for time series analysis: Application to hydrological time series. Hydrological Sciences Journal, 53(2): 353-366.

    Article  Google Scholar 

  • Maidment, D.R. and Parzen, E. (1984). Time patterns of water use in six Texas cities. Journal of Water Resources Planning and Management, ASCE, 110(1): 90-106.

    Article  Google Scholar 

  • Mirza, M.Q., Warrick, R.A., Ericksen, N.J. and Kenny, G.J. (1998). Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrological Sciences Journal, 43(6): 845-858.

    Article  Google Scholar 

  • Molénat, J., Davy, P., Gascuel-Odoux, C. and Durand, P. (1999). Study of three subsurface hydrologic systems based on spectral and cross-spectral analysis of time series. Journal of Hydrology, 222(1-4): 152-164.

    Article  Google Scholar 

  • Molénat, J., Davy, P., Gascuel-Odoux, C. and Durand, P. (2000). Spectral and cross- spectral analysis of three hydrological systems. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(4): 391-397.

    Article  Google Scholar 

  • Moraes, J.M., Pellegrino, G.Q., Ballester, M.V., Martinelli, L.A., Victoria, R.L. and Krusche, A.V. (1998). Trends in hydrological parameters of a southern Brazilian watershed and its relation to human induced changes. Water Resources Management, 12(4): 295-311.

    Article  Google Scholar 

  • Nieplová, E. (1995). Climate changes and variability monitoring and homogenization of observation series in Slovakia. Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995, http://www.cyf - kr.edu.pl/~ziniedzw/paper072.html (accessed on 30 January 2004).

  • Oguntunde, P.G., Friesen, J., van de Giesen, N. and Savenije, H.H.G. (2006). Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Physics and Chemistry of the Earth, 31: 1180-1188.

    Google Scholar 

  • Pagliara, S., Viti, C., Gozzini, B., Meneguzzo, F. and Crisci, A. (1998). Uncertainties and trends in extreme rainfall series in Tuscany, Italy: Effects on urban drainage networks design. Water Science and Technology , 37(11): 195-202.

    Article  Google Scholar 

  • Panda, D.K., Kumar, A. and Mohanty, S. (2011). Recent trends in sediment load of the tropical (Peninsular) river basins of India. Global and Planetary Change , 75(3-4): 108-118.

    Article  Google Scholar 

  • Perreault, L., Bernier, J., Bobee, B. and Parent, E. (2000). Bayesian change-point analysis in hydrometeorological time series, Part 1: The normal model revisited. Journal of Hydrology, 235(3): 221-241.

    Article  Google Scholar 

  • Pugacheva, G., Gusev, A., Martin, I., Schuch, N. and Pankov, V. (2003). 22-year periodicity in rainfalls in littoral Brazil. Geophysical Research Abstracts, EGS- AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, April 6-11, 2003, p. 6797.

    Google Scholar 

  • Radziejewski, M., Bardossy, A. and Kundzewicz, Z.W. (2000). Detection of change in river flow using phase randomization. Hydrological Sciences Journal, 45(4): 547558.

    Article  Google Scholar 

  • Raghuwanshi, N.S. and Wallender, W.W. (1997). Field measured evapotranspiration as a stochastic process. Agricultural Water Management, 32: 111-129.

    Article  Google Scholar 

  • Ramesh, N.I. and Davison, A.C. (2002). Local models for exploratory analysis of hydrological extremes. Journal of Hydrology, 256(1-2): 106-119.

    Article  Google Scholar 

  • Rao, G.P. (1995). Effect of climate change on streamflows in the Mahanadi River Basin, India. Water International, 20(4): 205-212.

    Article  Google Scholar 

  • Reed, D.W., Jakob, D. and Robson, A.J. (1999). Statistical procedures for flood frequency estimation. In: A.J. Robson and D.W. Reed (editors), Flood Estimation Handbook, Vol. 3, Institute of Hydrology, 338 pp.

    Google Scholar 

  • Robson, A.J. and Neal, C. (1996). Water quality trends at an upland site in Wales, UK, 1983-1993. Hydrological Processes, 1 0(2): 183-203.

    Article  Google Scholar 

  • Robson, A.J., Jones, T.K., Reed, D.W. and Bayliss, A.C. (1998). A study of national trend and variation in UK floods. International Journal of Climatology, 18: 165182.

    Article  Google Scholar 

  • Sahin, S. and Cigizoglu, H.K. (2010). Homogeneity analysis of Turkish meteorological data set. Hydrological Processes, 24(8): 981-992.

    Article  Google Scholar 

  • Schwankl, L.J., Raghuwanshi, N.S. and Wallender, W.W. (2000). Time series modeling for predicting spatially variable infiltration. Journal of Irrigation and Drainage Engineering, ASCE, 126(5): 283-287.

    Article  Google Scholar 

  • Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324): 1379-1389.

    Article  Google Scholar 

  • Serra, C., Burgueno, A. and Lana, X. (2001). Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917-1998. International Journal of Climatology, 21(5): 617-636.

    Article  Google Scholar 

  • Sharma, K.P., Moore, B. and Vorosmarty, C.J. (2000). Anthropogenic, climatic, and hydrologic trends in the Kosi Basin, Himalaya. Climatic Change, 47(1-2): 141 - 165.

    Article  Google Scholar 

  • Singh, P., Kumar, V., Thomas, T. and Arora, M. (2008). Basin-wide assessment of temperature trends in northwest and central India. Hydrological Sciences Journal, 53(2): 421-433.

    Article  Google Scholar 

  • Stansfield, B. (2001). Effects of sampling frequency and laboratory detection limits on the determination of time series water quality trends. New Zealand Journal of

    Google Scholar 

  • Marine and Freshwater Research, 35(5), http://www.rsnz.govt.nz/publish/nzjmfr/ 2001/91.php (accessed on 26 January 2005).

  • Tarhule, A. and Woo, M. (1998). Changes in rainfall characteristics in northern Nigeria. International Journal of Climatology, 18(11): 1261-1271.

    Article  Google Scholar 

  • TayanQ, M. and Toros, H. (1997). Urbanization effects on regional climate change in the case of four large cities of Turkey. Climatic Change, 35(4): 501-524.

    Article  Google Scholar 

  • TayanQ, M., Dalfes, H.N., Karaca, M. and Yenigün, O. (1998). A comparative assessment of different methods for detecting inhomogeneities in Turkish temperature data set. International Journal of Climatology, 18(5): 561-578.

    Article  Google Scholar 

  • Tsakalias, G. and Koutsoyiannis, D. (1999). A comprehensive system for the exploration and analysis of hydrological data. Water Resources Management, 13(4): 269-302.

    Article  Google Scholar 

  • Van Belle, G. and Hughes, J.P. (1984). Nonparametric tests for trend in water quality. Water Resources Research, 20(1): 127-136.

    Article  Google Scholar 

  • Vassilev, I. and Georgiev, B.N. (1996). River runoff changes and recent climatic fluctuations in Bulgaria. GeoJournal, 40(4): 379-385.

    Article  Google Scholar 

  • Vincent, L.A. and Gullett, D.W. (1999). Canadian historical and homogeneous temperature datasets for climate change analyses. International Journal of Climatology, 19(12): 1375-1388.

    Article  Google Scholar 

  • Walanus-Gliwice, A. (1995). The problem of periodicity in the hydrometeorology. Proceedings of the Conference on Climate Dynamics and the Global Change Perspective, Cracow, Poland, October 17-20, 1995. http://www.cyf-kr.edu.pl/ ~ziniedzw/paper101.html (accessed on 30 January 2004).

  • Webb, B.W. (1996). Trends in stream and river temperature. Hydrological Processes, 10(2): 205-226.

    Article  Google Scholar 

  • Westmacott, J.R. and Burn, D.H. (1997). Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. Journal of Hydrology, 202(1-4): 263-279.

    Article  Google Scholar 

  • Wilson, T.M., Ogden, A.E. and Mills, H.H., III (1992). Time-series analysis of groundwater chemistry in the west Tennessee sand aquifers. Journal of the Tennessee Academy of Science, 67(3): 29-33.

    Google Scholar 

  • Wu, H., Soh, L.-K., Samal, A. and Chen, X.H. (2008). Trend analysis of streamflow drought events in Nebraska. Water Resources Management, 22(2): 145-164.

    Article  Google Scholar 

  • Wu, L., Jury, W.A., Chang, A.C. and Allmaras, R.R. (1997). Time series analysis of field-measured water content of a sandy soil. Soil Science Society of America Journal, 61(3): 736-742.

    Article  Google Scholar 

  • Xu, Z.X., Takeuchi, K. and Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1-4): 144-150.

    Article  Google Scholar 

  • Yu, P.-S., Yang, T.-C. and Kuo, C.-C. (2006). Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20: 10071023.

    Article  Google Scholar 

  • Yu, P.-S., Yang, T.-C. and Wu, C.-K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1-4): 161-175.

    Article  Google Scholar 

  • Yu, Y-S., Zou, S. and Whittemore, D. (1993). Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1): 61-80.

    Article  Google Scholar 

  • Yue, S. and Wang, C.Y. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3): 201-218.

    Article  Google Scholar 

  • Yue, S., Pilon, P. and Cavadias, G. (2002b). Power of the Mann-Kendall and Spearman's

    Google Scholar 

  • rho tests for detecting monotonie trends in hydrological series. Journal ofHydrology , 259(1-4): 254-271.

    Google Scholar 

  • Yue, S., Pilon, P. and Phinney, B. (2003). Canadian streamflow trend detection: Impacts of serial and cross-correlation. Hydrological Sciences Journal, 48(1): 51-64.

    Article  Google Scholar 

  • Yue, S., Pilon, P., Phinney, B. and Cavadias, G. (2002a). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9): 1807-1829.

    Article  Google Scholar 

  • Yurekli, K., Kurunc, A. and Simsek, H. (2004). Prediction of daily maximum streamflow based on stochastic approaches. Journal of Spatial Hydrology, 4(2): 1-12.

    Google Scholar 

  • Zaninovic, K. and Gajic-Capka, M. (2000). Changes in components of the water balance in the Croatian lowlands. Theoretical and Applied Climatology, 65(1-2): 111-117.

    Google Scholar 

  • Zhang, X., Harvey, K.D., Hogg, W.D. and Yuzyk, T.R. (2001). Trends in Canadian streamflow. Water Resources Research, 37(4): 987-998.

    Article  Google Scholar 

  • Zhang, Z., Dehoff, A.A. and Pody, R.D. (2010a). A new approach to identify trend pattern of streamflows. Journal of Hydrologic Engineering, ASCE, 15(3): 244248.

    Google Scholar 

  • Zhang, Z., Dehoff, A.A., Pody, R.D. and Balay, J.W. (2010b). Detection of streamflow change in the Susquehanna River Basin. Water Resources Management, 24(10): 1947-1964.

    Article  Google Scholar 

  • Zhao, G., Hörmann, G., Fohrer, N., Zhang, Z. and Zhai, J. (2010). Streamflow trends and climate variability impacts in Poyang lake basin, China. Water Resources Management, 24(4): 689-706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Capital Publishing Company

About this chapter

Cite this chapter

Machiwal, D., Jha, M.K. (2012). Current Status of Time Series Analysis in Hydrological Sciences. In: Hydrologic Time Series Analysis: Theory and Practice. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1861-6_6

Download citation

Publish with us

Policies and ethics