Skip to main content

Abstract

Natural time series, including hydrologic, climatic and environmental time series, which satisfy the assumptions of homogeneity, randomness, non- periodic, non-persistence and stationarity, seem to be the exception rather than the rule (Rao et al., 2003). In fact, for all water resources studies involving the use of hydrologic time series data, preliminary statistical analyses must always be carried out to confirm whether the hydrologic time series possess all the required assumptions/characteristics (Adeloye and Montaseri, 2002). Nevertheless, most time series analysis is performed using standard methods after relaxing the required conditions one way or another in the hope that the departure from these assumptions is not large enough to affect the analysis results (Rao et al., 2003). A comprehensive survey of the past studies on the hydrologic time series analysis (Machiwal and Jha, 2006) revealed that no studies considered all the aspects of time series analysis. Major work is reported dealing with only linear trend analysis, and the homogeneity, stationarity, periodicity, and persistence, which are equally important characteristics of the hydrologic time series, have been ignored. In most past studies on time series analysis, only regression and/or Kendall's rank correlation tests are applied for trend detection. Esterby (1996) and Hess et al. (2001) presented an overview of selected trend tests. Thus, very limited studies are reported to date concerning a detailed analysis of homogeneity, stationarity, periodicity and persistence in the hydrologic time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeloye, A.J. and Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resources planning study. Hydrological Sciences Journal , 47(5): 679-692.

    Article  Google Scholar 

  • Aksoy, H. (2007). Hydrological variability of the European part of Turkey. Iranian Journal of Science & Technology , 31(B2): 225-236.

    Google Scholar 

  • Anderson, R.L. (1942). Distribution of the serial correlation coefficient. Annals of Mathematical Statistics , 13: 1-13.

    Article  Google Scholar 

  • Appel, U. and Brandt, A.V. (1983). Adaptive sequential segmentation of piecewise stationary time series. Information Sciences , 29: 27-56.

    Article  Google Scholar 

  • Bethea, R.M. and Rhinehart, R.R. (1991). Applied Engineering Statistics. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Blackman, R.T. and Tukey, J.W. (1959). The Measurement of Power Spectra from the Point of View of Communication Engineering. Dover Publication, U.K.

    Google Scholar 

  • Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, 575 pp.

    Google Scholar 

  • Buishand, T.A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58: 11-27.

    Article  Google Scholar 

  • Buishand, T.A. (1984). Tests for detecting a shift in the mean of hydrological time series. Journal of Hydrology, 73: 51-69.

    Article  Google Scholar 

  • Burn, D.H. (1994). Hydrologic effects of climatic change in west-central Canada. Journal of Hydrology, 160(1-4): 53-70.

    Article  Google Scholar 

  • Burn, D.H. and Elnur, M.A.H. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255(1-4): 107-122.

    Article  Google Scholar 

  • Chen, H.-L. and Rao, A.R. (2002). Testing hydrologic time series for stationarity. Journal of Hydrologic Engineering, ASCE, 7(2): 129-136.

    Article  Google Scholar 

  • Chernoff, H. and Zacks, S. (1964). Estimating the current means of a normal distribution which is subjected to change in time. Annals of Mathematical Statistics, 35: 9991018.

    Article  Google Scholar 

  • Conover, W.J. (1971). Practical Non-Parametric Statistics. Wiley, New York.

    Google Scholar 

  • Dahmen, E.R. and Hall, M.J. (1990). Screening of Hydrologic Data: Tests for Stationarity and Relative Consistency. ILRI Publication No. 49, Wageningen, the Netherlands, 60 p.

    Google Scholar 

  • Doob, J.L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics, 20: 393-403.

    Article  Google Scholar 

  • Douglas, E.M., Vogel, R.M. and Kroll, C.N. (2000). Trends in floods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, 240(1-2): 90-105.

    Article  Google Scholar 

  • Esterby, S.R. (1996). Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrological Processes , 10(2): 127149.

    Article  Google Scholar 

  • Fanta, B., Zaake, B.T. and Kachroo, R.K. (2001). A study of variability of annual river flow of the southern African region. Hydrological Sciences Journal , 46(4): 513524.

    Article  Google Scholar 

  • Fernando, D.A.K. and Jayawardena, A.W. (1994). Generation and forecasting of monsoon rainfall data. Proceedings of the 20 th WEDC Conference on Affordable Water Supply and Sanitation, Colombo, Sri Lanka, pp. 310-313.

    Google Scholar 

  • Gan, T.Y. (1992). Finding trends in air temperature and precipitation for Canada and north-eastern United States. In: G.W. Kite and K.D. Harvey (editors), Using Hydrometric Data to Detect and Monitor Climatic Change. Proceedings of the NHRI Workshop No. 8, National Hydrology Research Institute, Saskatoon, pp. 5778.

    Google Scholar 

  • Gan, T.Y. (1998). Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resources Research , 34(11): 3009-3015.

    Article  Google Scholar 

  • Gardner Jr., L.A. (1969). On detecting changes in the mean of normal variates. Annals of Mathematical Statistics , 40: 116-126.

    Article  Google Scholar 

  • Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold. New York.

    Google Scholar 

  • Giles, B.D. and Flocas, A. A. (1984). Air temperature variation in Greece, Part-I: Persistence, trend and fluctuations. International Journal of Climatology , 4: 531539.

    Google Scholar 

  • Haan, C.T. (2002). Statistical Methods in Hydrology. Second edition, Iowa State University Press, Ames, Iowa, USA, 496 pp.

    Google Scholar 

  • Hameed, T., Marino, M.A., DeVries, J.J. and Tracy, J.C. (1997). Method for trend detection in climatological variables. Journal of Hydrologic Engineering, ASCE , 2(4): 157-160.

    Article  Google Scholar 

  • Hart, B.I. (1942). Significance levels for the ratio of the mean square successive difference to the variance. Annals of Mathematical Statistics, 13: 445-447.

    Article  Google Scholar 

  • Helsel, R.D. and Hirsch, R.M. (1988). Discussion of "Applicability of the t-test for detecting trends in water quality variables" by Robert H. Montgomery and Jim C. Loftis. Water Resources Bulletin , 24(1): 201-204.

    Google Scholar 

  • Hess, A., Iyer, H. and Malm, W. (2001). Linear trend analysis: A comparison of methods. Atmospheric Environment, 35(30): 5211-5222.

    Article  Google Scholar 

  • Himmelblau, D.M. (1969). Process Analysis by Statistical Methods. John Wiley and Sons, New York.

    Google Scholar 

  • Hipel, K.W. and McLeod, A.I. (1994). Time Series Modeling of Water Resources and Environmental Systems. Elsevier, Amsterdam, the Netherlands, pp. 463-465.

    Google Scholar 

  • Hirsch, R.M. and Slack, J.R. (1984). Nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6): 727-732.

    Article  Google Scholar 

  • Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1): 107-121.

    Article  Google Scholar 

  • Hoel, P.G. (1954). Introduction to Mathematical Statistics. Second edition, John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Howell, K.B. (2001). Principles of Harmonic Analysis. Chapman and Hall/CRC Press, Washington, D.C., 769 pp.

    Google Scholar 

  • Hurd, H.L. and Gerr, N.L. (1991). Graphical methods for determining the presence of periodic correlation. Journal of Time Series Analysis , 12: 337-350.

    Article  Google Scholar 

  • Imberger, J. and Ivey, G.N. (1991). On the nature of turbulence in a stratified fluid, Part II: Applications to lakes. Journal of Physical Oceanography, 21(5): 659-680.

    Article  Google Scholar 

  • Jayawardena, A.W. and Lai, F. (1989). Time series analysis of water quality data in Pearl river, China. Journal of Environmental Engineering, ASCE, 115(3): 590-607.

    Article  Google Scholar 

  • Jayawardena, A.W. and Lau, W.H. (1990). Homogeneity tests for rainfall data. Hong Kong Engineer, The Hong Kong Institution of Engineers, 18: 22-25.

    Google Scholar 

  • Jenkins, G.M. and Watts, D.G. (1968). Spectral Analysis and Its Applications. Holden- Day, San Francisco, 525 pp.

    Google Scholar 

  • Kahya, E. and Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1-4): 128-144.

    Article  Google Scholar 

  • Kalayci, S. and Kahya, E. (1998). Detection of water quality trends in the rivers of the Susurluk Basin. Turkish Journal of Engineering and Environmental Sciences, 22(6): 503-514.

    Google Scholar 

  • Kanji, G.K. (2001). 100 Statistical Tests. Sage Publication, New Delhi, 111 pp.

    Google Scholar 

  • Kendall, M.G. (1973). Time Series. Charles Griffin and Co. Ltd., London, U.K.

    Google Scholar 

  • Kendall, M.G. (1975). Rank Correlation Methods. Charles Griffin and Co. Ltd., London, U.K.

    Google Scholar 

  • Khan, A.R. (2001). Analysis of Hydro-Meteorological Time Series in the Upper Indus Basin: Searching Evidence for Climatic Change. International Water Management Institute, Working Paper 23, Colombo, Sri Lanka, 31 p.

    Google Scholar 

  • Kiely, G. (1999). Climate change in Ireland from precipitation and streamflow observations. Advances in Water Resources, 23: 141-151.

    Article  Google Scholar 

  • Kiely, G., Albertson, J.D. and Parlange, M.B. (1998). Recent trends in diurnal variation of precipitation at Valentia on the west coast Ireland. Journal of Hydrology, 207: 270-279.

    Article  Google Scholar 

  • Kite, G. (1989). Use of time series analyses to detect climatic change. Journal of Hydrology, 111: 259-279.

    Article  Google Scholar 

  • Kottegoda, N.T. (1980). Stochastic Water Resources Technology. McMillan & Co. Ltd., London, U.K.

    Google Scholar 

  • Kumar, V. (2003). Rainfall characteristics of Shimla district (H.P.). Journal of Indian Water Resources Society, 23(1): 1-10.

    Google Scholar 

  • Lazaro, T.R. (1976). Nonparametric statistical analysis of annual peak flow data from a recently urbanized watershed. Water Resources Bulletin, 12(1): 101-107.

    Article  Google Scholar 

  • Lettenmaier, D.P. (1976). Detection of trends in water quality data from records with dependent observations. Water Resources Research, 12(5): 1037-1046.

    Article  Google Scholar 

  • Lettenmaier, D.P., Wood, E.F. and Wallis, J.R. (1994). Hydro-climatological trends in the continental United States, 1948-88. Journal of Climate, 7: 586-607.

    Article  Google Scholar 

  • Lins, H.F. and Slack, J.R. (1999). Streamflow trends in the United States. Geophysical Research Letters, 26(2): 227-230.

    Article  Google Scholar 

  • Lovell, B. and Boashash, B. (1987). Evaluation of criteria for detection of changes in nonstationary signals. Proceedings of the 1 st IASTED International Symposium on Signal Processing and its Applications (ISSPA), Brisbane, August 24-28, 1987, pp. 291-296.

    Google Scholar 

  • Machiwal, D. and Jha, M.K. (2006). Time series analysis of hydrologic data for water resources planning and management: A review. Journal of Hydrology and Hydromechanics, 54(3): 237-257.

    Google Scholar 

  • Machiwal, D. and Jha, M.K. (2008). Comparative evaluation of statistical tests for time series analysis: Application to hydrological time series. Hydrological Sciences Journal , 53(2): 353-366.

    Article  Google Scholar 

  • Mahé, G., L'Hote, Y., Olivry, J.-C. and Wotling, G. (2001) Trends and discontinuities in regional rainfall of West and Central Africa: 1951-1989. Hydrological Sciences Journal, 46(2): 211-226.

    Article  Google Scholar 

  • Maidment, D.R. and Parzen, E. (1984). Time patterns of water use in six Texas cities. Journal of Water Resources Planning and Management, ASCE, 110(1): 90-106.

    Article  Google Scholar 

  • Mann, H.B. (1945). Non-parametric tests against trend. Econometrica, 13: 245-259.

    Article  Google Scholar 

  • Matalas, N.C. (1967). Time series analysis. Water Resources Research, 3(3): 817-829.

    Article  Google Scholar 

  • McCuen, R.H. and James, L.D. (1972). Nonparametric statistical methods in urban hydrologic research. Water Resources Bulletin, 8(5): 965-975.

    Article  Google Scholar 

  • McGhee, J.W. (1985). Introductory Statistics. West Publishing Co., New York, USA.

    Google Scholar 

  • McMohan, T.A. and Mein, R.G. (1986). River and Reservoir Yield. Water Resources Publication, Littleton, Colorado, USA.

    Google Scholar 

  • Mirza, M.Q., Warrick, R.A., Ericksen, N.J. and Kenny, G.J. (1998). Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrological Sciences Journal, 43(6): 845-858.

    Article  Google Scholar 

  • Natrella, M.G. (1963). Experimental Statistics. National Bureau of Standards Handbook No. 91, US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Owen, D.B. (1962). Handbook of Statistical Tables. Addison-Wesley Publishing Company, Reading, Mass., USA.

    Google Scholar 

  • Parzen, E. (1963). Notes on Fourier Analysis and Spectral Windows. Technical Report 48, Stanford University, California, USA.

    Google Scholar 

  • Phoon, K.-K., Quek, S.-T. and An, P. (2003). Identification of statistically homogeneous soil layers using modified Bartlett statistics. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(7): 649-659.

    Article  Google Scholar 

  • Pugacheva, G., Gusev, A., Martin, I., Schuch, N. and Pankov, V. (2003). 22-year periodicity in rainfalls in littoral Brazil. Geophysical Research Abstracts, EGS- AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, April 6-11, 2003, p. 6797.

    Google Scholar 

  • Quimpo, R.G. (1968). Autocorrelation and spectral analysis in hydrology. Journal of the Hydraulics Division, ASCE, HY 2: 363-373.

    Google Scholar 

  • Radziejewski, M., Kundzewicz, Z.W. and Graczyk, D. (2002). Detectability of trends in long time series of river flow data - a runup effect. Proceedings of the 5 th International Conference on Hydro Science and Engineering, Warsaw, Poland, September 18-21, 2002. http://kfki.baw.de/conferences/ICHE/2002-Warsaw/ ARTICLES/PDF/257 C.pdf (accessed on 4 February 2004).

  • Ramesh, N.I. and Davison, A.C. (2002). Local models for exploratory analysis of hydrological extremes. Journal of Hydrology, 256(1-2): 106-119.

    Article  Google Scholar 

  • Rao, A.R., Hamed, K.H. and Chen, H.-L. (2003). Nonstationarities in Hydrologic and Environmental Time Series. Water Science and Technology Library, 45, 392 pp.

    Google Scholar 

  • Sachs, L. (1972). Statistische Auswertungsmethoden. 3 rd edition, Springer-Verlag, Berlin.

    Google Scholar 

  • Salas, J.D. (1993). Analysis and modeling of hydrologic time series. In: D.R. Maidment (editor-in-chief), Handbook of Hydrology. McGraw-Hill, Inc., USA, pp. 19.119.72.

    Google Scholar 

  • Schwankl, L.J., Raghuwanshi, N.S. and Walender, W. W. (2000). Time series modeling for predicting spatially variable infiltration. Journal of Irrigation and Drainage Engineering, ASCE, 126(5): 283-287.

    Article  Google Scholar 

  • Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324): 1379-1389.

    Article  Google Scholar 

  • Shahin, M., Van Oorschot, H.J.L. and De Lange, S.J. (1993). Statistical Analysis in Water Resources Engineering. A.A. Balkema, Rotterdam, the Netherlands, 394 pp.

    Google Scholar 

  • Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Stein, E.M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, N.J., 312 pp.

    Google Scholar 

  • Van Belle, G. and Hughes, J.P. (1984). Nonparametric tests for trend in water quality. Water Resources Research, 20(1): 127-136.

    Article  Google Scholar 

  • Vecchia, A.V. and Ballerini, R. (1991). Testing for periodic autocorrelations in seasonal time series data. Biometrika, 78: 53-63.

    Article  Google Scholar 

  • Wallis, J.R. and O'Connell, P.E. (1973). Firm reservoir yield — How reliable are historic hydrological records? Hydrological Sciences Bulletin, 18: 347-365.

    Article  Google Scholar 

  • WMO (1966). Climatic change. Technical Note 79, the World Meteorological Organization (WMO), Geneva, Switzerland.

    Google Scholar 

  • WMO (1988). Analysing long time series of hydrological data with respect to climatic variability. WCAP-3, WMO/TD No. 224, the World Meteorological Organization (WMO), Geneva, Switzerland.

    Google Scholar 

  • Yevjevich, V. (1972). Stochastic Processes in Hydrology. Water Resources Publication, Fort Collins, Colorado, 276 pp.

    Google Scholar 

  • Yue, S. and Wang, C.Y. (2002). The influence of serial correlation on the MannWhitney test for detecting a shift in median. Advances in Water Resources, 25: 325-333.

    Article  Google Scholar 

  • Yue, S., Pilon, P. and Phinney, B. (2003). Canadian streamflow trend detection: Impacts of serial and cross-correlation. Hydrological Sciences Journal, 48(1): 51-64.

    Article  Google Scholar 

  • Zhang, X., Harvey, K.D., Hogg, W.D. and Yuzyk, T.R. (2001). Trends in Canadian streamflow. Water Resources Research, 37(4): 987-998.

    Article  Google Scholar 

  • Zipper, C.E., Holtzman, G.I., Darken, P., Thomas, P., Gildea, J. and Shabman, L. (1998). An analysis of long-term water quality trends in Virginia. http:// www.nwqmc.org/98proceedings/Papers/49-ZIPP.html (accessed on 24 January 2004).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Capital Publishing Company

About this chapter

Cite this chapter

Machiwal, D., Jha, M.K. (2012). Methods for Time Series Analysis. In: Hydrologic Time Series Analysis: Theory and Practice. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1861-6_4

Download citation

Publish with us

Policies and ethics