Advertisement

Methods for Testing Normality of Hydrologic Time Series

  • Deepesh Machiwal
  • Madan Kumar Jha

Abstract

Statistical methods are applied in all the phases of time series analysis from collecting data to evaluating results in hydrologic studies. Advances in computer technology has enabled most of the scientists/researchers to apply statistical analyses effectively; however, some of the researchers do not check parametric test assumptions, especially the normality assumption (Adeloye and Montaseri, 2002). Many methods of time series analysis depend on the basic assumption that data were sampled from a normal distribution (Madansky, 1988; USEPA, 1996; Thode, 2002). This assumption is very crucial for the reliability of results especially for parametric tests. These days many statistical software packages are available, which include several tests for checking the normality of time series data. However, the important point is to judge which test should be used under what condition (USEPA, 1996).

Keywords

Time Series Data Time Series Analysis United States Environmental Protection Agency Data Interval Empirical Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adeloye, A.J. and Montaseri, M. (2002). Preliminary streamflow data analyses prior to water resources planning study. Hydrological Sciences Journal , 47(5): 679-692. CrossRefGoogle Scholar
  2. Armitage, P. and Colton, T. (1998a). Encyclopedia of Biostatistics, Volume 2. Wiley, New York, pp: 1759-1760. Google Scholar
  3. Armitage, P. and Colton, T. (1998b). Encyclopedia of Biostatistics, Volume 4. Wiley, New York, pp. 3075-3079. Google Scholar
  4. Bowman, K.O. and Shenton, L.R. (1975). Omnibus test contours for departures from normality based on .y ^and b 2 . Biometrika, 62: 243-250. Google Scholar
  5. Conover, W.J. (1980). Practical Nonparametric Statistics (Second Edition). John Wiley, New York, NY. Google Scholar
  6. D'Agostino, R.B. (1986). Tests for the normal distribution. In: R.B. D'Agostino and M.A. Stephens (editors), Goodness-of-Fit Techniques. Marcel Dekker, New York, USA. Google Scholar
  7. D'Agostino, R.B., Belanger, A. and D'Agostino Jr., R.B. (1990). Suggestion for using powerful and informative tests of normality. The American Statistician, 44: 316321. CrossRefGoogle Scholar
  8. Dixon, W.J. and Massey Jr., F.J. (1983). Introduction to Statistical Analysis. 4 th Edition, McGraw-Hill, New York, USA. Google Scholar
  9. Filliben, J.J. (1975). The probability plot correlation coefficient test for normality. Technometrics, 17: 111-117. CrossRefGoogle Scholar
  10. Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York, USA. Google Scholar
  11. GraphPad. (2007). Normality Tests: Use with Caution. http://www.graphpad.com/ library/BiostatsSpecial/article_197.htm (accessed on 14 January 2011).
  12. Jarque, C.M. and Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3): 255-259. CrossRefGoogle Scholar
  13. Jarque, C.M. and Bera, A.K. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55(2): 163-172. CrossRefGoogle Scholar
  14. Lehmann, E.L. (1999). Elements of Large Sample Theory. Springer, New York. Google Scholar
  15. Lilliefors, H.W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association , 62: 399402. CrossRefGoogle Scholar
  16. Lilliefors, H.W. (1969). Correction to the paper "On the Kolmogorov-Smirnov test for normality with mean and variance unknown". Journal of the American Statistical Association , 64: 1702. CrossRefGoogle Scholar
  17. Madansky, A. (1988). Prescriptions for Working Statisticians. Springer-Verlag, New York, NY. Google Scholar
  18. Massey Jr., F.J. (1967). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46: 68-78. CrossRefGoogle Scholar
  19. Mendes, M. and Pala, A. (2003). Type I Error Rate and Power of Three Normality Tests. Pakistan Journal of Information and Technology, 2: 135-139. Google Scholar
  20. Pearson, E.S. and Hartley, H.O. (editors) (1972). Biometrika Tables for Statisticians, Volume 2. Cambridge University Press, U.K. Google Scholar
  21. Shapiro, S.S. (1980). How to Test Normality and Other Distributional Assumptions. Volume 3, The ASQC Basic References in Quality Control: Statistical Techniques, American Society for Quality Control, Milwaukee, WI. Google Scholar
  22. Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3&4): 591-611. Google Scholar
  23. Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. The Iowa State University Press, Ames, Iowa. Google Scholar
  24. Steinskog, D.J., Tj0stheim, D.B. and Kvamst0, N.G. (2007). A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Monthly Weather Review, American Meteorological Society, 135: 1151-1157. Google Scholar
  25. Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69: 730-737. CrossRefGoogle Scholar
  26. Stephens, M.A. (1986). Tests based on EDF statistics. In: R.B. D'Agostino and M.A. Stephens (editors), Goodness-of-Fit Techniques. Marcel Dekker, New York, USA. Google Scholar
  27. Thode, H.C. (2002). Testing for Normality. Marcel Dekker, New York, USA, 368 pp. Google Scholar
  28. USEPA (1992). Guidance Document on the Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities. EPA/530/R-93/003, United States Environmental Protection Agency (USEPA), Office of Solid Waste, Washington D.C. Google Scholar
  29. USEPA (1996). Guidance for Data Quality Assessment: Practical Methods for Data Analysis. EPA QA/G-9, United States Environmental Protection Agency (USEPA), Office of Research and Development, Washington D.C. Google Scholar
  30. USEPA (2006). Data Quality Assessment: Statistical Methods for Practitioners. Guidance Document EPA QA/G-9 S, United States Environmental Protection Agency (USEPA), Office of Environmental Information, Washington D.C. Google Scholar
  31. Walpole, R. and Myers, R. (1985). Probability and Statistics for Engineers and Scientists. 3 rd Edition, MacMillan, New York, USA. Google Scholar

Copyright information

© Capital Publishing Company 2012

Authors and Affiliations

  • Deepesh Machiwal
    • 1
  • Madan Kumar Jha
    • 2
  1. 1.Central Arid Zone Research Institute Regional Research StationGujaratIndia
  2. 2.Indian Institute of Technology KharagpurWest BengalIndia

Personalised recommendations