Fingerprint Orientation Template Matching Based on Mutual Information

  • Xuying Zhao
  • Xiaokun Zhang
  • Geng Zhao
  • Rong Qian
  • Xiaodong Li
  • Kejun Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 107)

Abstract

A novel fingerprint matching method based on mutual information is proposed. Fingerprint Orientation is estimated in blocksize and quantized in an appropriate interval. MI of two fingerprint images is calculated in a joint probability distribution of their orientation fields with high noise immunity. The fingerprint matching result involves a combination of MI and minutia matching score using the product fusion strategy. Experimental results show the better performance compared with the alternative approach.

Keywords

Fingerprint recognition Mutual information Orientation field Template matching 

References

  1. 1.
    Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images a survey. IEEE Trans Med Imaging 22(8):986–1004CrossRefGoogle Scholar
  2. 2.
    Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633CrossRefGoogle Scholar
  3. 3.
    Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17(4):536–546CrossRefGoogle Scholar
  4. 4.
    Collignon A, Vandermeulen D, Suetens P, Marchal G (1995) 3D multimodality medical image registration using feature space clustering. In: Computer vision, virtual reality, and robotics in medicine, vol 905. Springer, London, pp 195–204Google Scholar
  5. 5.
    Studholme C, Hill DLG, Hawkes DJ (1995) Multiresolution voxel similarity measures for MR-PET registration. In: Information processing in medical imaging. Kluwer, Dordrecht, pp 287–298Google Scholar
  6. 6.
    Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. In: Information processing in medical imaging. Kluwer, Dordrecht, pp 263–274Google Scholar
  7. 7.
    Wells WM III, Viola P, Kikinis R (1995) Multi-modal volume registration by maximization of mutual information. In: Medical robotics and computer assisted surgery. Wiley, New York, pp 55−62Google Scholar
  8. 8.
    Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New YorkCrossRefMATHGoogle Scholar
  9. 9.
    Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71–86CrossRefGoogle Scholar
  10. 10.
    Maes F, Vandermeulen D, Suetens P (1999) Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal 3(4):373–386CrossRefGoogle Scholar
  11. 11.
    Liu L, Jiang T, Yang J, Zhu C (2006) Fingerprint registration by maximization of mutual information. IEEE Trans Image Process 15(5):1100–1110CrossRefGoogle Scholar
  12. 12.
    Su H-T, Feng D-D, Wang XY, Zhao R-C (2003) Face recognition using hybrid feature. In: Proceedings of the second international conference on machine learning and cybernetics, Xian, 2–5 Nov 2003Google Scholar
  13. 13.
    Karu K, Jian AK (1996) Fingerprint classfication. Pattern Recognit 29(3):389–404Google Scholar
  14. 14.
    Kass M, Witkin A (1984) Analyzing oriented patterns. Comput Vis Graph Image Process 37:263–285Google Scholar
  15. 15.
    Zhou J, Gu J (2004) A model-based method for the computation of fingerprints’ orientation field. IEEE Trans Image Process 13(6):821–835CrossRefGoogle Scholar
  16. 16.
    Nie D, Ma L, Xiao XZ, Xiao S (2005) Optimization based fingerprint direction field estimation. In: Proceedings of 27th annual international conference of the engineering in medicine and biology society 2005 (IEEE-EMBS 2005), pp 6265–6268Google Scholar
  17. 17.
    Gamble F, Frye L, Grieser D (1992) Real-time fingerprint verification system. Appl Opt 31(5):652–655CrossRefGoogle Scholar
  18. 18.
    Wilson C, Watson C, Paek E (1992) Effect of resolution and image quality on combined optical and neural network fingerprint matching. Pattern Recognit 33(2):317–331CrossRefGoogle Scholar
  19. 19.
    Jain AK, Prabhakar S, Hong L, Pankanti S (2000) Filterbank-based fingerprint matching. IEEE Trans Image Process 9(5):846–859CrossRefGoogle Scholar
  20. 20.
    Lee CJ, Wang SD (1999) Fingerprint feature extraction using gabor filters. Electron Lett 35(4):288–290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Xuying Zhao
    • 1
  • Xiaokun Zhang
    • 1
  • Geng Zhao
    • 1
  • Rong Qian
    • 1
  • Xiaodong Li
    • 1
  • Kejun Zhang
    • 1
  1. 1.Beijing Electronic Science and Technology InstituteBeijingPeople’s Republic of China

Personalised recommendations