Advertisement

Ultrasound Strain and Strain Rate Imaging of the Early Sage of Carotid Artery with Type 2 Diabetes Mellitus

  • Cun Liu
  • Yanling Zheng
  • Yuanliu He
  • Hongxia Xu
  • Juan Su
  • Lili Zhang
  • Xiaohong Zhou
  • Changchun Liu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 107)

Abstract

To evaluate the value of velocity vector image in evaluating the motorial characteristics of the early stage of the CCA in patients with type 2 diabetes mellitus (DM2). Methods. Fifty patients without vascular complications with type 2 diabetes and fifty healthy volunteers underwent carotid ultrasound examinations, the dynamic image was analysised by the off-line software (syngo Velocity Vector Imaging technology (VVI), Siemens). Results. Vmax of anterior wall, anterolateral wall and posterolateral wall were higher than those of posterior wall, posteromedial wall and anteromedial wall (P < 0.05). VTTP, Vmax, Smax and SRmax of corresponding segments had significant differences in study group and control group (P < 0.05). Conclusions. Velocity Vector Imaging can be used to evaluate the change of common carotid elasticity in early stage of AS in patients with type 2 diabetes.

Keywords

Ultrasonography Velocity vector imaging Speckle tracking Common carotid Atherosclerosis Diabetes mellitus 

References

  1. 1.
    Unwin N, Gan D, Whiting D (2010) The IDF Diabetes Atlas: providing evidence, raising awareness and promoting action. Diabetes Res Clin Pract 87:2–3Google Scholar
  2. 2.
    Graham I, Atar D, Borch-Johnsen K et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil 14(Suppl 2):S1–113Google Scholar
  3. 3.
    Andersson DK, Svardsudd K (1995) Long-term glycemic control relates to mortality in type II diabetes. Diabetes Care 18(12):1534–1543. doi: 10.2337/diacare.18.12.1534.Google Scholar
  4. 4.
    Burke AP, Farb A, Malcom GT et al (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282CrossRefGoogle Scholar
  5. 5.
    Davies MJ (2000) The pathophysiology of acute coronary syndromes. Heart 83:361–366CrossRefGoogle Scholar
  6. 6.
    Cho IJ, Chi YS, Yang W-I, Kim S-A, Chang H-J, Jang Y, Chung N, Ha J-W (2010) Assessment of mechanical properties of common carotid artery in Takayasu’s arteritis using velocity vector imaging. Circ J 74:1465–1470CrossRefGoogle Scholar
  7. 7.
    Valocik G, Druzbacka L, Valocikova I, Mitro P (2010) Velocity vector imaging to quantify left atrial function. Int J Cardiovasc Imaging 26:641–649CrossRefGoogle Scholar
  8. 8.
    Lei Z, Yan L, Fei ZP, Xia ZY, Ping JX, Ting LX, Qiang CW, Xi LC, Cheng Z, Yun Z (2010) Peak radial and circumferential strain measured by velocity vector imaging is a novel index for detecting vulnerable plaques in a rabbit model of atherosclerosis. Atherosclerosis 211:146–152CrossRefGoogle Scholar
  9. 9.
    Wendelhag I, Gustavsson T, Suurküla M, et al (1991) Ultrasound measurement of wall thickness in the carotidartery: fundamental principles and description of a computerized analysing system. Clin Physiol (Oxford, England) 11:565–77Google Scholar
  10. 10.
    Störk S, van den Beld AW, von Schacky C et al (2004) Carotid artery plaque burden, stiffness, and mortality risk in elderly men a prospective, population-based cohort study. Circulation 110:344–348Google Scholar
  11. 11.
    D’Hooge J, Heimdal A, Jamal F et al (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1(3):154–170CrossRefGoogle Scholar
  12. 12.
    Chen J, Cao T, Duan Y et al (2007) Velocity vector imaging in assessing myocardial systolic function of hypertensive patients with left ventricular hypertrophy. Can J Cardiol 23:957–961CrossRefGoogle Scholar
  13. 13.
    Canesson M, Tanabe M, Suffoletto MS et al (2006) Velocity vector imaging to quantify ventricular dyssynchrony and predict response to cardiac resynchronization therapy. Am J Cardiol 98:949–953CrossRefGoogle Scholar
  14. 14.
    Pirat B, Khoury DS, Hartley CJ et al (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 51:651–659CrossRefGoogle Scholar
  15. 15.
    Bohs LN, Trahey GE (1991) A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans Biomed Eng 38:280–286CrossRefGoogle Scholar
  16. 16.
    Mailloux GE, Bleau A, Bertrand M, Petitclerc R (1987) Computer analysis of heart motion from two-dimensional echocardiograms. IEEE Trans Biomed Eng 34:356–364CrossRefGoogle Scholar
  17. 17.
    Friedlander AH, Garrett NR, Norman DC (2002) The prevalence of calcified carotid artery atheromas on the panoramic radiographs of patients with type 2 diabetes mellitus. J Am Dent Assoc 133(11):1516–1523Google Scholar
  18. 18.
    Zou C, Huang P, Jiao Y, Jin H, Yang Y, Chen L (2008) Research on the common carotid artery wall of patients with type 2 diabetic by velocity vector imaging. Chin J Ultrasonography 17(12):1026–1029Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cun Liu
    • 1
    • 2
  • Yanling Zheng
    • 3
  • Yuanliu He
    • 1
  • Hongxia Xu
    • 1
  • Juan Su
    • 1
  • Lili Zhang
    • 1
  • Xiaohong Zhou
    • 1
  • Changchun Liu
    • 2
  1. 1.Jinan Central HospitalShandong UniversityJinanChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina
  3. 3.School of Mathematical SciencesUniversity of JinanJinanChina

Personalised recommendations