Advertisement

Analyzing and Developing Strategy Flexibility in Mathematics Education

  • Lieven Verschaffel
  • Koen Luwel
  • Joke Torbeyns
  • Wim Van Dooren
Chapter

Abstract

In this chapter, we describe and comment on how strategy flexibility or adaptivity has been defined, operationalized, and investigated from different theoretical perspectives on (elementary) mathematics learning and teaching. The resulting working definition is the selection and execution of the most appropriate solution strategy (available in one’s strategy repertoire) on a given mathematical task, and for a given individual, in a given context or situation. Then we report the scarce available empirical research indicating that strategy flexibility is an important and distinctive feature of being good at mathematics or having true mathematical expertise. In the third and final part, we argue that, because strategy flexibility has to be viewed as a disposition (involving also knowledge, beliefs, attitudes, and emotions) rather than a skill, teaching for strategy flexibility cannot be conceived as a process that one can implement until routine expertise in the use of the strategies has been obtained, but should be the goal from the start of the teaching and learning process and in an integrative way.

Keywords

Mathematics Education Strategy Choice Choice Condition Metacognitive Knowledge Epistemic Belief 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was funded by Grant GOA 2006/01 “Developing adaptive expertise in mathematics education” from the Research Fund Katholieke Universiteit Leuven, Belgium.

References

  1. Acevedo Nistal, A., Clarebout, G., Elen, J., Van Dooren, W., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: A critical review. ZDM-The International Journal on Mathematics Education, 41, 627–636.CrossRefGoogle Scholar
  2. Baroody, A. J., & Dowker, A. (Eds.). (2003). The development of arithmetic concepts and skills. Constructing adaptive expertise. Mahwah, NJ: Erlbaum.Google Scholar
  3. Bisanz, J. (2003). Arithmetical development: Commentary on chapters 1 through 8 and reflections on directions. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. 435–452). Mahwah, NJ: Erlbaum.Google Scholar
  4. Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93, 627–638.CrossRefGoogle Scholar
  5. Bransford, J. (2001). Thoughts on adaptive expertise. Unpublished manuscript. Retrieved from http://www.vanth.org/docs/AdaptiveExpertise.pdf
  6. Carr, M., & Jessup, D. L. (1997). Gender differences in first-grade mathematics strategy use: Social and metacognitive influences. Journal of Educational Psychology, 89, 318–328.CrossRefGoogle Scholar
  7. Carry, L. R., Lewis, C., & Bernard, J. E. (1980). Psychology of equation solving: An information processing study (Final Technical Report). Austin, TX: The University of Texas at Austin.Google Scholar
  8. Cortés, A. (2003, July). A cognitive model of experts’ algebraic solving methods. Proceedings of the International Group for the Psychology of Mathematics Education, USA, 2, 253–260.Google Scholar
  9. Coulson, R. L., Feltovich, P. J., & Spiro, R. J. (1989). Foundations of a misunderstanding of the ultrastructural basis of myocardial failure. A reciprocation network of oversimplifications. The Journal of Medicine and Philosophy, 14, 109–146.Google Scholar
  10. De Corte, E., Mason, L., Depaepe, F., & Verschaffel, L. (2011). Self-regulation of mathematical knowledge and skills. In B. Zimmerman & D. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 155–172). New York: Routledge.Google Scholar
  11. Dowker, A. (1992). Computational estimation strategies of professional mathematicians. Journal for Research in Mathematics Education, 23, 45–55.CrossRefGoogle Scholar
  12. Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5, Whole no 270).Google Scholar
  13. Ellis, S. (1997). Strategy choice in sociocultural context. Developmental Review, 17, 490–524.CrossRefGoogle Scholar
  14. Ericsson, A. K., Charness, N., Feltovich, P., & Hoffman, R. R. (2006). Cambridge handbook on expertise and expert performance. Cambridge, UK: Cambridge University Press.Google Scholar
  15. Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (1997). Issues of expert flexibility in contexts characterized by complexity and change. In P. J. Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 125–146). Menlo Park, CA: AAAI Press.Google Scholar
  16. Geary, D. C. (2003). Arithmetical development: Commentary on chapters 9 through 15 and future directions. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 453–464). Mahwah, NJ: Erlbaum.Google Scholar
  17. Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6, 105–128.CrossRefGoogle Scholar
  18. Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York: Macmillan.Google Scholar
  19. Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7, 293–307.CrossRefGoogle Scholar
  20. Hacker, D. J. (1998). Definitions and empirical foundations. In D. J. Hacker, J. Dunlosky, & A. Graesser (Eds.), Metacognition in educational theory and practice (pp. 1–24). Mahwah, NJ: Erlbaum.Google Scholar
  21. Hatano, G. (1982). Cognitive consequences of practice in culture specific procedural skills. The Quarterly Newsletter of the Laboratory of Comparative Human Cognition, 4, 15–18.Google Scholar
  22. Hatano, G. (2003). Foreword. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. xi–xiii). Mahwah, NJ: Erlbaum.Google Scholar
  23. Hatano, G., & Inagaki, K. (1992). Desituating cognition through the construction of conceptual knowledge. In P. Light & G. Butterworth (Eds.), Context and cognition (pp. 115–133). Hemel Hempstead, UK: Harvester Wheatsheaf.Google Scholar
  24. Hatano, G., & Oura, Y. (2003). Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32, 26–29.CrossRefGoogle Scholar
  25. Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving. Memory and Cognition, 30, 447–455.CrossRefGoogle Scholar
  26. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Helping children learn mathematics. Washington, DC: National Academy Press.Google Scholar
  27. Koninklijke Nederlandse Akademie van Wetenschappen. (2009). Rekenonderwijs op de basisschool: Analyse en sleutels tot verbetering [Elementary mathematics education: Analysis and keys for improvement]. Amsterdam: KNAW.Google Scholar
  28. Lemaire, P., & Reder, L. (1999). What effects strategy selection in arithmetic. The example of parity and five effects on product verification. Memory and Cognition, 27, 364–382.CrossRefGoogle Scholar
  29. Luwel, K., Foustana, A., Papadatos, Y., & Verschaffel, L. (2011). The role of intelligence and feedback in children’s strategy competence. Journal of Experimental Child Psychology, 108, 61–76.Google Scholar
  30. Luwel, K., Lemaire, P., & Verschaffel, L. (2005). Children’s strategies in numerosity judgment. Cognitive Development, 20, 448–471.CrossRefGoogle Scholar
  31. Luwel, K., Torbeyns, J., Schillemans, V., Onghena, P., & Verschaffel, L. (2009). Strengths and weaknesses of the choice/no-choice method in research on strategy use. European Psychologist, 14, 351–362.CrossRefGoogle Scholar
  32. Luwel, K., Torbeyns, J., & Verschaffel, L. (2003). The relation between metastrategic knowledge, strategy use and task performance: Findings and reflections from a numerosity judgement task. European Journal of Psychology of Education, 18, 425–447.CrossRefGoogle Scholar
  33. Luwel, K., Verschaffel, L., Onghena, P., & De Corte, E. (2003). Flexibility in strategy use: Adaptation of numerosity judgement strategies to task characteristics. European Journal of Cognitive Psychology, 15, 247–266.CrossRefGoogle Scholar
  34. Milo, B., & Ruijssenaars, A. J. J. M. (2002). Strategiegebruik van leerlingen in het speciaal basisonderwijs: begeleiden of sturen? [Strategy instruction in special education: Guided or direct instruction?]. Pedagogische Studiën, 79, 117–129.Google Scholar
  35. Muis, K. R. (2007). The role of epistemic beliefs in self-regulated learning. Educational Psychologist, 42, 173–190.CrossRefGoogle Scholar
  36. Muis, K. R. (2008). Epistemic profiles and self-regulated learning: Examining relations in the context of mathematics problem solving. Contemporary Educational Psychology, 33, 177–208.CrossRefGoogle Scholar
  37. National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  38. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Retrieved from http://standards.nctm.org/document/index.htm
  39. National Mathematics Advisory Panel. (2008). Foundations for Success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.Google Scholar
  40. Ontwikkelingsdoelen en eindtermen. Informatiemap voor de onderwijspraktijk. Gewoon basisonderwijs. (1998). [Standards. Documentation for practitioners. Elementary education.]. Brussel, Belgium: Ministerie van de Vlaamse Gemeenschap, Departement Onderwijs, Afdeling Informatie en Documentatie.Google Scholar
  41. Payne, J. W., Bettman, J. R., & Johnson, J. R. (1993). The adaptive decision maker. Cambridge, UK: Cambridge University Press.Google Scholar
  42. Perkins, D. (1995). Outsmarting IQ: The emerging science of learnable intelligence. New York: The Free Press.Google Scholar
  43. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852.CrossRefGoogle Scholar
  44. Schillemans, V., Luwel, K., Onghena, P., & Verschaffel, L. (in press). The influence of presentation order on individuals’ strategy choice. Studia Psychologica.Google Scholar
  45. Selter, C. (1998). Building on children’s mathematics. A teaching experiment in grade three. Educational Studies in Mathematics, 36, 1–27.CrossRefGoogle Scholar
  46. Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. Oxford, UK: Oxford University Press.Google Scholar
  47. Siegler, R. S. (1998). Children’s thinking. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  48. Siegler, R. S. (2000). The rebirth of children’s learning. Child Development, 71, 26–35.CrossRefGoogle Scholar
  49. Siegler, R. S., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 33, pp. 1–42). Oxford, UK: Elsevier.Google Scholar
  50. Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology. General, 126, 71–92.CrossRefGoogle Scholar
  51. Spiro, R. J. (1980). Constructive processes in prose comprehension and recall. In R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 245–278). Hillsdale, NJ: Erlbaum.Google Scholar
  52. Star, J. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411.Google Scholar
  53. Star, J. R., & Newton, K. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM-The International Journal on Mathematics Education, 41, 557–567.CrossRefGoogle Scholar
  54. Star, J. R., Rittle-Johnson, B., Lynch, K., & Perova, N. (2009). The role of prior knowledge in the development of strategy flexibility: The case of computational estimation. ZDM-The International Journal on Mathematics Education, 41, 569–579.CrossRefGoogle Scholar
  55. Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31, 280–300.CrossRefGoogle Scholar
  56. Straker, A. (1999). The national numeracy project: 1996–99. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 39–48). Buckingham, UK: Open University Press.Google Scholar
  57. Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.CrossRefGoogle Scholar
  58. Thompson, I. (1999). Getting your head around mental calculation. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 145–156). Buckingham, UK: Open University Press.Google Scholar
  59. Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50, 29–47.CrossRefGoogle Scholar
  60. Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2005). Simple addition strategies in a first-grade class with multiple strategy instruction. Cognition and Instruction, 23, 1–21.CrossRefGoogle Scholar
  61. Treffers, A., De Moor, E., & Feijs, E. (1990). Proeve van een national programma voor het reken/wiskundeonderwijs op de basisschool. Deel 1. Overzicht einddoelen [Towards a national curriculum for mathematics education in the elementary school. part 1. Overview of the goals]. Tilburg, the Netherlands: Zwijsen.Google Scholar
  62. Van der Heijden, M. K. (1993). Consistentie van aanpakgedrag [Consistency in solution behavior]. Lisse, the Netherlands: Swets & Zeitlinger.Google Scholar
  63. Van Dooren, W., Verschaffel, L., & Onghena, P. (2002). The impact of preservice teachers’ content knowledge on their evaluation of students’ strategies for solving arithmetic and algebra word problems. Journal for Research in Mathematics Education, 33, 319–351.CrossRefGoogle Scholar
  64. Verschaffel, L., De Corte, E., Lamote, C., & Dhert, N. (1998). Development of a flexible strategy for the estimation of numerosity. European Journal of Psychology of Education, 13, 347–270.CrossRefGoogle Scholar
  65. Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Greenwich, CT: Information Age Publishing.Google Scholar
  66. Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335–359.CrossRefGoogle Scholar
  67. Wittmann, E. Ch., & Müller, G. N. (1990–1992). Handbuch Produktiver Rechnenübungen: Vols 1 & 2 [Handbook of productive arithmetic exercises: Vols. 1 & 2]. Düsseldorf und Stuttgart, Germany: Klett Verlag.Google Scholar
  68. Wittmann, E. Ch., & Müller, G. N. (2004). Das Zahlenbuch [The book of numbers. Mathematics]. Düsseldorf und Stuttgart, Germany: Klett Verlag.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lieven Verschaffel
    • 1
  • Koen Luwel
    • 1
    • 2
  • Joke Torbeyns
    • 1
    • 3
  • Wim Van Dooren
    • 1
  1. 1.Centre for Instructional Psychology and TechnologyK.U.LeuvenLeuvenBelgium
  2. 2.Centre for Educational Research and DevelopmentHogeschool-Universiteit BrusselBrusselsBelgium
  3. 3.Group T – Leuven Education CollegeLeuvenBelgium

Personalised recommendations