Experiments on Long-Haul High-Capacity Transmission Systems

  • Gabriella Bosco
  • Francesco Matera
  • Karin Ennser
  • Morten Ibsen
  • Lucia Marazzi
  • Francesca Parmigiani
  • Periklis Petropoulos
  • Pierluigi Poggiolini
  • Marco Tabacchiera
  • Marcelo Zannin
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Progress in optical communications has been one of the key factors for the enormous growth of the ICT sector, and, in particular, of the Internet phenomenon. Such a progress has been driven by experimental successes that have been obtained in the last three decades in several laboratories all over the world, and we have witnessed a fantastic challenge among such labs to reach record targets such as maximum bit rate, maximum propagation distance, higher performance, maximum efficiency, and, recently, minimum energy consumption. The search for the maximum bit rate × distance was based on the principle of infinite bandwidth of the optical fiber that let us to imagine transmission of enormous capacities over transoceanic distances, especially after the invention of the optical amplifier.

Keywords

Phase Noise Wavelength Division Multiplex Chromatic Dispersion Pilot Tone Baud Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Boffi, P.: Stable 100-Gb/s POLMUX-DQPSK transmission with automatic polarization stabilization. IEEE Photon. Technol. Lett. 21, 745–747 (2009)ADSCrossRefGoogle Scholar
  2. Bosco, G., Carena, A., Curri, V., Poggiolini, P., Forghieri, F.: Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems. IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). 1 Aug 2010ADSCrossRefGoogle Scholar
  3. Cai, J.-X., et~al.: Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km. In: Proceedings of the OFC 2010, post-deadline paper PDPB10, San Diego, 21–25 Mar 2010Google Scholar
  4. Chandrasekhar, S., Liu, X., Zhu B., Peckham, D.W.: Transmission of a 1.2 Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber. In: Proceedings of the ECOC 2009, paper PD2.6, Vienna, 20–24 Sept 2009Google Scholar
  5. Chou, M.H.: Optical signal processing and switching with second-order nonlinearities in waveguides. IEICE Trans. Electron. E83-C, 869–874 (2000)Google Scholar
  6. Croussore, K., Li, G.: Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre. Electron. Lett. 43(3), 177–178 (2007a)CrossRefGoogle Scholar
  7. Croussore, K., Li, G.: Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification. IEEE Photon. Technol. Lett. 19(11), 864–866 (2007b)ADSCrossRefGoogle Scholar
  8. Croussore, K., Li, G.: BPSK phase and amplitude regeneration using a traveling-wave phase-sensitive amplifier. IEEE/LEOS Winter Topical Meeting Series, paper MB1.3, Sorrento, 14–16 Jan 2008, pp. 45–46Google Scholar
  9. Croussore, K., Kim, I., Kim, Ch, Han, Y., Li, G.: Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier. Opt. Expr. 14, 2085–2094 (2006)ADSCrossRefGoogle Scholar
  10. Curri, V., Poggiolini, P., Carena, A., Forghieri, F.: Dispersion compensation and mitigation of non-linear effects in 111 Gb/s WDM coherent PM-QPSK systems. IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008). 1st Sept 2008ADSCrossRefGoogle Scholar
  11. Cvecek, K., Sponsel, K., Stephan, C., Onishchukov, G., Ludwig, R., Schubert, C., Schmauss, B., Leuchs, G.: Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror. Opt. Expr. 16, 1923–1928 (2008)ADSCrossRefGoogle Scholar
  12. Della Valle, G., Festa, A., Taccheo, S., Ennser, K., Aracil, J.: Nonlinear dynamics induced by burst amplification in optically gain-stabilized erbium-doped amplifiers. Opt. Lett. 32, 903–905 (2007)ADSCrossRefGoogle Scholar
  13. Demir, A.: Nonlinear phase noise in optical-fiber-communication systems. J. Light. Technol. 25(8), 2002–2031 (2007)ADSCrossRefGoogle Scholar
  14. Dischler, R., Buchali, F.: Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-QPSK signal with spectral efficiency of 3.3bit/s/Hz over 400 km of SSMF. In: Proceedings of the OFC 2009, paper PDPC2, San Diego, 22–26 Mar 2009Google Scholar
  15. Ennser, K., Della Valle, G., Ibsen, M., Shmulovich, J., Taccheo, S.: Erbium-doped waveguide amplifier for reconfigurable WDM metro networks. IEEE Photon. Technol. Lett. 17, 1468–1470 (2005a)ADSCrossRefGoogle Scholar
  16. Ennser, K., Della Valle, G., Mariani, D., Ibsen, M., Shmulovich, J., Taccheo S., Laporta P.: Erbium-Doped waveguide amplifier insensitive to channel transient and to spectral-hole-burning offset. In: Proceedings of the Advanced Solid-State Photonics 2005:MB32 (2005b)Google Scholar
  17. Ennser, K., Taccheo, S., Rogowski, T., Shmulovich, J.: Efficient erbium-doped waveguide amplifier insensitive to power fluctuations. Opt. Expr. 14, 10307–10312 (2006)ADSCrossRefGoogle Scholar
  18. Fludger, C.R.S.: 10x111 Gbit/s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation. In: Proceedings of the OFC/NFOEC 2007, post-deadline paper PDP-22, Anaheim, Feb 2007Google Scholar
  19. Gavioli, G., Torrengo, E., Bosco, G., Carena, A., Curri, V., Miot, V., Poggiolini, P., Forghieri, F., Savory, S.J., Molle, L., Freund, R.: NRZ-PM-QPSK 16 × 100 Gb/s transmission over installed fiber with different dispersion maps. IEEE Photon. Technol. L. 22(6), 371–373 (2010). 1 Mar 2010ADSCrossRefGoogle Scholar
  20. Gnauck, H., Winzer, P.J., Doerr, C.R., Buhl, L.L.: 10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency. In: Proceedings of the OFC 2009, San Diego, Mar 2009Google Scholar
  21. Gordon, J.P., Mollenauer, L.F.: Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15(23), 1351–1353 (1990)ADSCrossRefGoogle Scholar
  22. Grellier, E., Antona, J.-C., Bigo, S.: Revisiting the evaluation of non-linear propagation impairments in highly dispersive systems. In: Proceedings of the ECOC 2009, paper 10.4.2, Vienna, 20–24 Sept 2009Google Scholar
  23. Hasegawa, A., Tapper, F.: Transmission of stationary nonlinear dispersive dielectric fibers I Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)Google Scholar
  24. Krcmarík, D., Slavík, R., Park, Y., Azaña, J.: Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter. Opt. Expr. 17, 7074–7087 (2009)ADSCrossRefGoogle Scholar
  25. Latkin, A.I., Boscolo, S., Bhamber, R.S., Turitsyn, S.K.: Doubling of optical signals using triangular pulses. J. Opt. Soc. Am. B 26, 1492–1496 (2009)ADSGoogle Scholar
  26. Lu, G.-W., Miyazaki, T.: Optical phase add/drop for format conversion between DQPSK and DPSK and its application in optical label switching systems. IEEE Photon. Technol. Lett. 21, 322–324 (2009)ADSCrossRefGoogle Scholar
  27. Ma, Y., Yang, Q., Tang, Y., Chen, S., Shieh, W.: 1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access. In: Proceedings of the OFC 2009, paper PDPC1, San Diego, 22–26 Mar 2009Google Scholar
  28. Marazzi, L.: Real-time 100-Gb/s POLMUX RZ-DQPSK transmission over uncompensated 500 km of SSMF by optical phase conjugation. In: Proceedings of the OFC ‘09, Optical Fiber Communication Conference, paper JWA44, San Diego, 22–26 Mar 2009Google Scholar
  29. Martelli, P., et~al.: All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal. Opt. Expr. 17(20), 17758–17763 (2009)ADSCrossRefGoogle Scholar
  30. Martinelli, M.: Polarization stabilization in optical communication systems. J. Light. Technol. 24(1), 4172–4183 (2006)ADSCrossRefGoogle Scholar
  31. Matsumoto, M., Sakaguchi, H.: DPSK signal regeneration using a fiber-based amplitude regenerator. Opt. Expr. 16, 11169–11175 (2008)ADSCrossRefGoogle Scholar
  32. Matsumoto, M., Sanuki, K.: Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter. Opt. Expr. 15, 8094–8103 (2007)ADSCrossRefGoogle Scholar
  33. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)Google Scholar
  34. Ng, T.T., Parmigiani, F., Ibsen, M., Zhange, Z., Petropoulos, P., Richardson, D.J.: Compensation of linear distortions by using XPM with parabolic pulses as a time lens. IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008)ADSCrossRefGoogle Scholar
  35. Nielsen, L.G., Dasgupta, S., Mermelstein, M.D., Jakobsen, D., Herstrom, S., Pedersen, M.E.V., Lim, E.L., Alam, S.-U., Parmigiani, F., Richardson, D.J., Palsdottir, B.: A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering. ECOC 2010, Turin, 19–23 Sept 2010Google Scholar
  36. Parameswaran, K.R., et~al.: Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 27(3), 179–181 (2002)ADSCrossRefGoogle Scholar
  37. Parmigiani, F., Petropoulos, P., Ibsen, M., Richardson, D.J.: All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating. IEEE J. Light. Technol. 24(1), 357–364 (2006a)ADSCrossRefGoogle Scholar
  38. Parmigiani, F., Petropoulos, P., Ibsen, M., Richardson, D.J.: Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. IEEE Photon. Technol. Lett. 18(7), 829–831 (2006b)ADSCrossRefGoogle Scholar
  39. Parmigiani, F., Finot, C., Mukasa, K., Ibsen, M., Roelens, M.A.F., Petropoulos, P., Richardson, D.J.: Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Expr. 14(17), 7617–7622 (2006c)ADSCrossRefGoogle Scholar
  40. Parmigiani, F., Oxenlowe, L.K., Galili, M., Ibsen, M., Zibar, D., Petropoulos, P., Richardson, D.J., Clausen, A.T., Jeppesen, P.: All-optical 160 Gbit/s retiming system using fiber grating based pulse shaping technology. J. Light. Technol. 27(9), 1135–1141 (2008a)CrossRefGoogle Scholar
  41. Parmigiani, F., Ibsen, M., Ng, T.T., Provost, L., Petropoulos, P., Richardson, D.J.: An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper. Photon. Technol. Lett. 20(17), 1461–1463 (2008b)ADSCrossRefGoogle Scholar
  42. Parmigiani, F., Ng, T.T., Ibsen, M., Petropoulos, P., Richardson, D.J.: Timing jitter tolerant all-optical TDM demultiplexing using a saw-tooth pulse shaper. Photon. Technol. Lett. 20, 1992–1994 (2008c)ADSCrossRefGoogle Scholar
  43. Parmigiani, F., Ibsen, M., Petropoulos, P., Richardson, D.J.: Efficient all-optical wavelength conversion scheme based on a saw-tooth pulse shaper. Photon. Technol. Lett. 21(24), 1837–1839 (2009a)ADSCrossRefGoogle Scholar
  44. Parmigiani, F., Petropoulos, P., Ibsen, M., Almeida, P.J., Ng, T.T., Richardson, D.J.: Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper. Opt. Expr. 17, 6562–6567 (2009b)CrossRefGoogle Scholar
  45. Parmigiani, F., Slavík, R., Kakande, J., Lundström, C., Sjödin, M., Andrekson, P.A., Weerasuriya, R., Sygletos, S., Ellis, A.D., Grüner-Nielsen, L., Jakobsen, D., Herstrøm, S., Phelan, R., O’Gorman, J., Bogris, A., Syvridis, D., Dasgupta, S., Petropoulos, P., Richardson, D.J.: All-optical phase regeneration of 40 Gbit/s DPSK signals in a black-box phase sensitive amplifier. In: Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2010), Paper PDPC3, San Diego (2010a)Google Scholar
  46. Parmigiani, F., Slavik, R., Kakande, J., Gruner-Mielsen, L., Jakobsen, D., Herstrom, S., Weerasuriya, S., Sygletos, S., Ellis, A.D., Petropoulos, P., Richardson, D.J.: All-optical phase and amplitude regeneration properties of a 40 Gbit/s DPSK black-box phase sensitive amplifier, ECOC 2010, Turin, 9–23 Sept 2010bGoogle Scholar
  47. Petropoulos, P., Ibsen, M., Ellis, A.D., Richardson, D.J.: Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating. IEEE J. Light. Technol. 19(5), 746–752 (2001)ADSCrossRefGoogle Scholar
  48. Poggiolini, P., Nespola, A., Abrate, S., Ferrero, V., Lezzi, C.: Long-term PMD characterization of a metropolitan G.652 fiber plant. J. Light. Technol. 24(11), 4022–4029 (2006). Nov 2006ADSCrossRefGoogle Scholar
  49. Roelens, M.A.F., Bolger, J.A., Williams, D., Frisken, S.J., Baxter, G.W., Clarke, A.M., Eggleton, B.J.: Flexible and reconfigurable time-domain demultiplexing of optical signals at 160 Gb/s. IEEE Photon. Technol. Lett. 21(10), 618–620 (2009)ADSCrossRefGoogle Scholar
  50. Salsi, M., et~al.: 155x100Gbit/s coherent PDM-QPSK transmission over 7,200 km. In: Proceedings of the ECOC 2009, post-deadline paper PD2.5, Vienna, 20–24 Sept 2009Google Scholar
  51. Sjödin, M., Johannisson, P., Sköld, M., Karlsson, M., Andrekson, P.; Cancellation of SPM in self-homodyne coherent systems. ECOC 2009, paper We8.4.5, Vienna, 20–24 Sept 2009Google Scholar
  52. Sköld, M., Yang, J., Sunnerud, H., Karlsson, M., Oda, S., Andrekson, P.A.: Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier. Opt. Expr. 16, 5974–5982 (2008)CrossRefGoogle Scholar
  53. Slavik, R., Parmigiani, F., Kakande, J., Lundstrom, C., Sjodin, M., Andrekson, P., Weerasuriya, R., Sygletos, S., Ellis, A.D., Gruner-Nielsen, L., Jakobsen, D., Herstrom, S., Phelan, R., O’Gorman, J., Bogris, A., Syvridis, D., Dasgupta, S., Petropoulos, P., Richardson, D.J.: All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat. Photon. 4, 690–695 (2010)ADSCrossRefGoogle Scholar
  54. Taccheo, S., Della Valle, G., Festa, A., Ennser, K., Aracil, J.: Amplification of optical bursts in gain-stabilized erbium-doped optical amplifier. In: Proceedings of the Optical Fiber Communication Conference 2007:OMN3 (2007)Google Scholar
  55. Torrengo, E., et~al.: Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing. In: Proceedings of the ECOC 2010, paper We.7.C.2, Torino, Sept 2010Google Scholar
  56. Van Den Borne, D., Sleiffer, V., Alfiad, M., Jansen, S., Wuth, T.: POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100 G transmission. In: Proceedings of the ECOC 2009, invited paper 3.4.1, Vienna, 20–24 Sept 2009Google Scholar
  57. Weerasuriya, R., Sygletos, S., Ibrahim, S.K., Phelan, R., O’Carroll, J., Kelly, B., O’Gorman, J., Ellis, A.D.: Generation of frequency symmetric signals from a BPSK input for phase sensitive amplification. OWT6, paper number 1928, OFC 2010Google Scholar
  58. Zannin, M., Ennser, K., Taccheo, S., Careglio, D., Solé-Pareta, J., Aracil, J.: On the benefits of optical gain clamped amplification in optical burst switching networks. IEEE J. Light. Technol. 27, 5475–5482 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gabriella Bosco
    • 1
  • Francesco Matera
    • 2
  • Karin Ennser
    • 3
  • Morten Ibsen
    • 4
  • Lucia Marazzi
    • 5
  • Francesca Parmigiani
    • 4
  • Periklis Petropoulos
    • 4
  • Pierluigi Poggiolini
    • 1
  • Marco Tabacchiera
    • 2
  • Marcelo Zannin
    • 3
  1. 1.Electronic DepartmentPolitecnico di TorinoTorinoItaly
  2. 2.Fondazione Ugo BordoniRomaItaly
  3. 3.College of EngineeringSwansea UniversitySwansea, West GlamorganUK
  4. 4.Optoelectronics Research Centre (ORC)University of SouthamptonSouthampton, HampshireUK
  5. 5.CorecomMilanoItaly

Personalised recommendations