Structural Approach to Aromaticity and Local Aromaticity in Conjugated Polycyclic Systems

Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 5)

Abstract

After an introductory brief discussion of the important and much debated concept of aromaticity, we elaborate on a recently proposed scheme for the partition of π-electrons of Kekuléan polycyclic conjugated hydrocarbons to individual rings, so that by summing π-electrons within individual rings of polycyclic conjugated hydrocarbons one obtains the total number of π-electrons in a molecule. We discuss separately for various types of hydrocarbons the π-Electron Content of individual rings, to be denoted as EC. In particular we summarize the EC results that we published in a series of papers which included: benzenoid catafusenes, benzenoid coronafusenes, benzenoid perifusenes, alternant and nonalternant conjugated hydrocarbons. Finally we return to Clar structures of benzenoid hydrocarbons as well as Clar structures of a selection of non-benzenoid alternant hydrocarbons like biphenylene, and point to a significant difference in distribution of π-electrons when instead of using all Kekulé valence structures one focuses on the subset of Kekulé valence structures indicated by Clar’s model.

Keywords

Central Ring Dualist Graph Ring Size Individual Ring Benzenoid Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aido M, Hosoya H (1980) Tetrahedron 36:1317–1326CrossRefGoogle Scholar
  2. Aihara J (1977) J Am Chem Soc 99:2048–2053CrossRefGoogle Scholar
  3. Aihara J (1982) Pure Appl Chem 54:1115–1128CrossRefGoogle Scholar
  4. Aihara J (1987) Bull Chem Soc Jpn 60:3581–3584CrossRefGoogle Scholar
  5. Aihara J (1992) J Am Chem Soc 114:865–868CrossRefGoogle Scholar
  6. Aihara J (2003) J Phys Chem A 107:11553–11557CrossRefGoogle Scholar
  7. Aihara J (2008) J Phys Chem A 112:4382–4385CrossRefGoogle Scholar
  8. Anderson PG (1986) In: Philippou AN, Bergum PG, Horadam AF (eds) Fibonacci numbers and their applications. Riedel, Dordrecht, p 2Google Scholar
  9. Armit JV, Robinson R (1925) J Chem Soc 127:1604–1618CrossRefGoogle Scholar
  10. Balaban AT (1969) Tetrahedron 25:2949–2956CrossRefGoogle Scholar
  11. Balaban AT (1980) Pure Appl Chem 52:1409–1429CrossRefGoogle Scholar
  12. Balaban AT (1989) MATCH Commum Math Comput Chem 24:29–38Google Scholar
  13. Balaban AT (2004) Polycyclic Aromat Compd 24:83–89CrossRefGoogle Scholar
  14. Balaban AT (2009) In: Krygowski TM, Cyranski MK (eds) Aromaticity in heterocyclic compounds. Springer, New York, pp 203–246Google Scholar
  15. Balaban AT (2010) In: Katritzky AR (ed) Advances of heterocyclic chemistry, vol 99. Elsevier, Amsterdam, pp 61–105Google Scholar
  16. Balaban AT (2011) as Guest Editor for a special issue on Aromaticity. Open Org Chem J (in press)Google Scholar
  17. Balaban AT, Harary F (1968) Tetrahedron 24:2505–2516CrossRefGoogle Scholar
  18. Balaban AT, Klein DJ (2009) J Phys Chem C 113:19123–19133CrossRefGoogle Scholar
  19. Balaban AT, Mallion RB (2011) Croat Chem Acta (in press)Google Scholar
  20. Balaban AT, Randić M (2004a) J Chem Inf Comput Sci 44:50–59CrossRefGoogle Scholar
  21. Balaban AT, Randić M (2004b) J Chem Inf Comput Sci 44:1701–1707CrossRefGoogle Scholar
  22. Balaban AT, Randić M (2004c) New J Chem 28:800–806CrossRefGoogle Scholar
  23. Balaban AT, Randić M (2005) J Math Chem 37:443–453CrossRefGoogle Scholar
  24. Balaban AT, Randić M (2007) J Univers Comput Sci 13:1514–1539Google Scholar
  25. Balaban AT, Randić M (2008a) New J Chem 32:1071–1078CrossRefGoogle Scholar
  26. Balaban AT, Randić M (2008b) Int J Quantum Chem 108:898–926CrossRefGoogle Scholar
  27. Balaban AT, Schmalz TG (2006) J Chem Inf Model 46:1563–1579CrossRefGoogle Scholar
  28. Balaban AT, Tomescu I (1983) MATCH Commum Math Comput Chem 14:155–182Google Scholar
  29. Balaban AT, Banciu M, Ciorba V (1987) Annulenes, benzo-, hetero-, homo-derivatives, and their valence isomers, vol 1. CRC Press, Boca Raton, p 5Google Scholar
  30. Balaban AT, Oniciu D, Katritzky AR (2004) Chem Rev 104:2777–2812CrossRefGoogle Scholar
  31. Balaban AT, Schleyer PvR, Rzepa HS (2005) Chem Rev 105:3436–3447CrossRefGoogle Scholar
  32. Balaban AT, Furtula B, Gutman I, Kovačević R (2007) Polycycl Aromat Comp 27:51–63CrossRefGoogle Scholar
  33. Balaban AT, Gutman I, Stanković S (2008a) Polycycl Aromat Comp 28:85–97CrossRefGoogle Scholar
  34. Balaban AT, Pompe M, Randić M (2008b) J Phys Chem A 112:4148–4157CrossRefGoogle Scholar
  35. Balaban AT, Randić M, Vukičević D (2008c) J Math Chem 43:773–779CrossRefGoogle Scholar
  36. Balaban AT, Đurđević J, Gutman I (2009) Polycycl Aromat Comp 29:185–208CrossRefGoogle Scholar
  37. Balaban AT, Bean DE, Fowler PW (2010a) Acta Chem Slov 57:507–512Google Scholar
  38. Balaban AT, Dickens TK, Gutman I, Mallion RB (2010b) Croat Chem Acta 83:209–215Google Scholar
  39. Balaban AT, Đurđević J, Gutman I, Jeremić S, Radenković S (2010c) J Phys Chem A 114:5870–5877CrossRefGoogle Scholar
  40. Balaban AT, Gutman I, Jeremić S, Ðurdević J (2011) Monatsh Chem 142:53–57CrossRefGoogle Scholar
  41. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
  42. Chun D, Cheng Y, Wudl F (2008) Angew Chem Int Ed Engl 47:8380–8385CrossRefGoogle Scholar
  43. Ciesielski A, Krygowski TM, Cyrański MK (2010) Symmetry 2:1390–1400CrossRefGoogle Scholar
  44. Clar E (1964) Polycyclic hydrocarbons, vol 1. Academic, New YorkGoogle Scholar
  45. Clar E (1972) The aromatic sextet. Wiley, LondonGoogle Scholar
  46. Crocker EC (1922) J Am Chem Soc 44:1618–1630CrossRefGoogle Scholar
  47. Cyrański MK, Krygowski TM (1996) J Chem Inf Comput Sci 36:1142–1145CrossRefGoogle Scholar
  48. Cyrański MK, Krygowski TM (1998) Tetrahedron 54:14919–14924CrossRefGoogle Scholar
  49. Cyrański MK, Stępień BT, Krygowski TM (2000) Tetrahedron 56:9663–9667CrossRefGoogle Scholar
  50. Dewar MJS (1967) In: Aromaticity: An international symposium held at Sheffield on 6th–8th July 1966, The Chemical Society, London, pp 177–215Google Scholar
  51. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New YorkGoogle Scholar
  52. Dewar MJS, de Llano C (1969) J Am Chem Soc 91:789–795CrossRefGoogle Scholar
  53. Dias JR (1987) Handbook of polycyclic hydrocarbons. Elsevier, AmsterdamGoogle Scholar
  54. Dosche C, Löhmannröben H-G, Bieser A, Dosa PI, Han S, Iwamoto M, Schleifenbaum A, Vollhardt KPC (2002) Phys Chem Chem Phys 4:2156–2161CrossRefGoogle Scholar
  55. Đurđević J, Gutman I, Terzić J, Balaban AT (2009) Polycycl Aromat Comp 29:90–102CrossRefGoogle Scholar
  56. El-Basil S, Randić M (1987) J Math Chem 1:281–307CrossRefGoogle Scholar
  57. Flocke N, Schmalz TG, Klein DJ (1998) J Chem Phys 109:873–880CrossRefGoogle Scholar
  58. Fries K (1927) Justus Liebigs Ann Chem 454:121CrossRefGoogle Scholar
  59. Gutman I (1982) Bull Soc Chim Beograd 47:453–471Google Scholar
  60. Gutman I (2004) Indian J Chem 43A:1615–1618Google Scholar
  61. Gutman I (2005) Monatsh Chem 136:1055–1069CrossRefGoogle Scholar
  62. Gutman I (2006) MATCH Commun Math Comput Chem 56:345–356Google Scholar
  63. Gutman I (2009) In: Mathematical methods and modelling for students of chemistry and biology. Graovac A, Gutman I, Vukičević D (eds), Hum, Zagreb, p 13Google Scholar
  64. Gutman I, Bosanac S (1977) Tetrahedron 33:1809–1812CrossRefGoogle Scholar
  65. Gutman I, Cyvin SJ (1989) Introduction to the theory of benzenoid hydrocarbons. Springer, BerlinCrossRefGoogle Scholar
  66. Gutman I, Petrović V, Mohar B (1993) Chem Phys Lett 203:378–382CrossRefGoogle Scholar
  67. Gutman I, Morikawa T, Narita S (2004a) Z Naturforsch 59a:295–298Google Scholar
  68. Gutman I, Vukičević D, Graovac A, Randić M (2004b) J Chem Inf Comput Sci 44:296–299CrossRefGoogle Scholar
  69. Gutman I, Balaban AT, Randić M, Kiss-Tóth C (2005a) Z Naturforsch 60a:171–176Google Scholar
  70. Gutman I, Gojak S, Turković N, Furtula B (2005b) MATCH Commum Math Comput Chem 53:139–145Google Scholar
  71. Gutman I, Randić M, Balaban AT, Furtula B, Vučković V (2005c) Polycycl Aromat Comp 25:215–226CrossRefGoogle Scholar
  72. Gutman I, Stanković S, Đurđević J, Furtula B (2007) J Chem Inf Model 47:776–781CrossRefGoogle Scholar
  73. Gutman I, Đurđević J, Balaban AT (2009) Polycycl Aromat Comp 29:3–11CrossRefGoogle Scholar
  74. Ham NS, Ruedenberg K (1958) J Chem Phys 29:1215–1229CrossRefGoogle Scholar
  75. Han S, Anderson DR, Bond AD, Chu HV, Disch RL, Holmes D, Schulman JM, Tear SJ, Vollhardt KPC, Whitener GD (2002) Angew Chem Int Ed 2002(41):3227–3230CrossRefGoogle Scholar
  76. Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, CambridgeGoogle Scholar
  77. Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New YorkGoogle Scholar
  78. Herndon WC, Ellzey ML (1974) J Am Chem Soc 96:6631–6642CrossRefGoogle Scholar
  79. Hess BA, Schaad LJ (1980) Pure Appl Chem 52:1471–1494CrossRefGoogle Scholar
  80. Hückel E (1931) Z Phys 70:204–286CrossRefGoogle Scholar
  81. Hückel E (1937) Z Elektrochem Angew Phys Chem 43:752–758–827–849Google Scholar
  82. Hückel E (1938) Z Phys 72:310–337Google Scholar
  83. Hückel E (1940) Grundzüge der Theorie ungesättigter und aromatischer Verbindungen. Verlag Chemie, Berlin, p 71Google Scholar
  84. Hückel E (1975) Ein Gelehrtesleben. Verlag Chemie, WeinheimGoogle Scholar
  85. Hückel E, Hückel W (1932) Nature 129:937–938CrossRefGoogle Scholar
  86. Jiang Y, Zhu H, Wang G (1993) J Mol Struct 297:327–335CrossRefGoogle Scholar
  87. Kaur I, Stein NN, Kopreski RP, Miller GP (2009) J Am Chem Soc 131:3424–3425CrossRefGoogle Scholar
  88. Kaur I, Jazdzyk M, Stein NN, Prusevich P, Miller GP (2010) J Am Chem Soc 132:1261–1263CrossRefGoogle Scholar
  89. Kikuchi S (1997) J Chem Educ 74:194–201CrossRefGoogle Scholar
  90. Klein DJ (1992) J Chem Educ 69:691–694CrossRefGoogle Scholar
  91. Körner W (1867) Bull Acad Roy Belg 24:166Google Scholar
  92. Kruszewski J (1971) Acta Chim Lodz 16:77–82Google Scholar
  93. Kruszewski J (1980) Pure Appl Chem 52:1525–1540CrossRefGoogle Scholar
  94. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
  95. Krygowski TM, Cyrański MK (1996) Tetrahedron 52:1713–1722CrossRefGoogle Scholar
  96. Krygowski TM, Cyrański MK (1998) In: Párkányi C (ed) Theoretical organic chemistry. Elsevier, New York, pp 153–187CrossRefGoogle Scholar
  97. Krygowski TM, Cyrański MK (2001) Chem Rev 101:1385–1419CrossRefGoogle Scholar
  98. Krygowski TM, Ciesielski A, Bird CW, Kotschy A (1995) J Chem Inf Comput Sci 35:203–210CrossRefGoogle Scholar
  99. Krygowski TM, Cyrański MK, Ciesielski A, Świrska B, Leszczyński P (1996) J Chem Inf Comput Sci 36:1135–1141CrossRefGoogle Scholar
  100. Li S, Jiang Y (1995) J Am Chem Soc 117:8401–8406CrossRefGoogle Scholar
  101. Mallion RB (2008) Croat Chem Acta 81:227–246Google Scholar
  102. Mandado M, Bultinck P, González-Moa MJ, Mosquera RA (2006) Chem Phys Lett 433:5–9CrossRefGoogle Scholar
  103. Matta CF, Hernández-Trujillo J (2003) J Phys Chem A 107:7496–7504CrossRefGoogle Scholar
  104. Miličevi A, Nikoli S, Trinajsti N (2004) J Chem Inf Comput Sci 44:415–412CrossRefGoogle Scholar
  105. Miljanić OS, Vollhardt KPC (2006) In: Haley M, Tykwinski R (eds) Carbon-rich compounds. Wiley-VCH, Weinheim, p 140CrossRefGoogle Scholar
  106. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticy: electronic and structural aspects, Wiley-VCH, WeinheimGoogle Scholar
  107. Monev V, Fratev F, Polansky OE, Mehlhorn A (1981) Tetrahedron 37:1187–1191CrossRefGoogle Scholar
  108. Moran D, Stahl F, Bettinger HF, Schaeffer HF III, Schleyer PvR (2003) J Am Chem Soc 125:6746–6752CrossRefGoogle Scholar
  109. Moyano A, Paniagua J-C (1991) J Org Chem 56:1858–1866CrossRefGoogle Scholar
  110. Oonishi L, Ohshima S, Fujisawa S, Aoki J, Ohashi Y, Krygowski TM (1992) J Mol Struct 265:283–292CrossRefGoogle Scholar
  111. Patchovskii S, Thiel W (2000) J Mol Model 6:67–75CrossRefGoogle Scholar
  112. Pauling L (1931) J Am Chem Soc 53:3225–3237CrossRefGoogle Scholar
  113. Pauling L (1940) The nature of the chemical bond and the structure of molecules and crystals; an introduction to modern structural chemistry. Cornell University Press, IthacaGoogle Scholar
  114. Pauling L (1980) Acta Crystalllogr B 36:1898–1901CrossRefGoogle Scholar
  115. Pauling L, Wheland GW (1933) J Chem Phys 1:362–374CrossRefGoogle Scholar
  116. Platt JR (1953) J Chem Phys 21:1597–1600CrossRefGoogle Scholar
  117. Poater J, Fradera X, Duran M, Solà M (2003a) Chem Eur J 9:1113–1122CrossRefGoogle Scholar
  118. Poater J, Fradera X, Duran M, Solà M (2003b) Chem Eur J 9:400–406CrossRefGoogle Scholar
  119. Polansky OE, Derflinger G (1967) Int J Quantum Chem 1:379–401CrossRefGoogle Scholar
  120. Pompe M, Randić M, Balaban AT (2008) J Phys Chem A 112:11769–11776CrossRefGoogle Scholar
  121. Randić M (1974) Tetrahedron 30:2067–2074CrossRefGoogle Scholar
  122. Randić M (1975) Tetrahedron 31:1477–1481CrossRefGoogle Scholar
  123. Randić M (1980) Pure Appl Chem 52:1587–1596CrossRefGoogle Scholar
  124. Randić M (2002) In: Sen KD (ed) Reviews of modern quantum chemistry. A celebration of the contributions of Robert G. Parr, vol 1. World Scientific, New Jersey, pp 204–239CrossRefGoogle Scholar
  125. Randić M (2003) Chem Rev 103:3449–3605CrossRefGoogle Scholar
  126. Randić M (2004) J Chem Inf Comput Sci 44:365–372CrossRefGoogle Scholar
  127. Randić M (2011) Acta Chem Slov 58 (in press)Google Scholar
  128. Randić M, Balaban AT (2004) Polycycl Aromat Comp 24:173–193CrossRefGoogle Scholar
  129. Randić M, Balaban AT (2006) J Chem Inf Model 46:57–64CrossRefGoogle Scholar
  130. Randić M, Balaban AT (2008) Int J Quantum Chem 108:865–897CrossRefGoogle Scholar
  131. Sakurai K, Kitaura K, Nishimoto K (1986) Theor Chim Acta 69:23–34CrossRefGoogle Scholar
  132. Schleyer PvR (2001) as Guest Editor. Chem Rev 101(5) (May issue) pp 1115–1566Google Scholar
  133. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  134. Schleyer PvR, Manoharan M, Jiao H, Stahl F (2001) Org Lett 3:3643–3646CrossRefGoogle Scholar
  135. Staab HA, Diederich F (1983) Chem Ber 116:3487–3503CrossRefGoogle Scholar
  136. Suresh CH, Gadre SR (1999) J Org Chem 64:2505–2512CrossRefGoogle Scholar
  137. Tarko L, Filip P (2003) Rev Roum Chim 48:745–758Google Scholar
  138. Thomson JJ (1921) Philos Mag 41:510–544Google Scholar
  139. Trinajstić N, Schmalz TG, Živković TP, Nikolić S, Hite GE, Klein DJ, Seitz WA (1991) New J Chem 15:27–31Google Scholar
  140. Vukičević D, Randić M, Balaban AT (2004) J Math Chem 36:271–279CrossRefGoogle Scholar
  141. Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267–1300CrossRefGoogle Scholar
  142. Wu J, Schmalz TG, Klein DJ (2003) J Chem Phys 119:11011–11016CrossRefGoogle Scholar
  143. Zhu H, Jiang Y (1992) Chem Phys Lett 193:446–450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Texas A&M University at Galveston, MARSGalvestonUSA
  2. 2.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations