Advertisement

Graph Drawing with Eigenvectors

  • István László
  • Ante Graovac
  • Tomaž Pisanski
  • Dejan Plavšić
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 5)

Abstract

The visualization of graphs describing molecular structures or other atomic arrangements is necessary in theoretical studying or examining nano structures of several atoms. In the present paper we review previous results obtained by drawing graphs with the help various matrices as the adjacency matrix, the Laplacian matrix and the Colin de Verdière matrix. In examples we show their possibilities and limits of applicability. We suggest a new matrix that reproduces well the same structures and those ones which were not drawn by the previous matrices.

Keywords

Graphene Sheet Planar Graph Adjacency Matrix Laplacian Matrix Super Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I. László thanks for the supports of grants TAMOP-4.2.1/B-09/1/KONV-2010-0003, TAMOP-4.2.1/B-09/1/KMR-2010-0002 and for the support obtained in the frame work of bi-lateral agreement between the Croatian Academy of Science and Art and the Hungarian Academy of Sciences.

References

  1. Biyikoglu T, Hordijk W, Leydold J, Pisanski T, Stadler PF (2004) Linear Algebra Appl 390:155–174CrossRefGoogle Scholar
  2. Biyikoglu T, Leydold J, Stadler PF (2007) Laplacian eigenvectors of graphs. Perron-Frobenius and Faber-Krahn type theorems, LNM1915. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  3. Brenner DW (1990) Phys Rev B 42:9458–9471CrossRefGoogle Scholar
  4. Colin de Verdière Y (1998) Spectres de graphes, cours spécialisés 4. Société Mathématique de France, ParisGoogle Scholar
  5. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, Upper Saddle RiverGoogle Scholar
  6. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon anotubes: their properties and applications. Academic, New York/LondonGoogle Scholar
  7. Fowler PW, Manolopulos DE (1995) An atlas of fullerenes. Clarendon, OxfordGoogle Scholar
  8. Fowler PW, Pisanski T, Shaw-Taylor J (1995) In Tamassia R, Tollis EG (eds) Graph drawing. Lecture notes in computer science, vol 894. Springer-Verlag, BerlinGoogle Scholar
  9. Godsil CD, Royle GF (2001) Algebraic graph theory. Springer, HeidelbergCrossRefGoogle Scholar
  10. Graovac A, Plavšić D, Kaufman M, Pisanski T, Kirby EC (2000) J Chem Phys 113:1925–1931CrossRefGoogle Scholar
  11. Graovac A, Lászlo I, Plavšić D, Pisanski T (2008a) MATCH Commun Math Comput Chem 60:917–926Google Scholar
  12. Graovac A, László I, Pisanski T, Plavšić D (2008b) Int J Chem Model 1:355–362Google Scholar
  13. Hall KM (1970) Manage Sci 17:219–229CrossRefGoogle Scholar
  14. Kaufmann M, Wagner D (eds) (2001) Drawing graphs. Methods and models, LNCS 2025. Springer-Verlag, GermanyGoogle Scholar
  15. Koren Y (2005) Comput Math Appl 49:1867–1888CrossRefGoogle Scholar
  16. László I (2004a) Carbon 42:983–986CrossRefGoogle Scholar
  17. László I (2004b) In Buzaneva E, Scharff P (eds) Frontiers of multifunctional integrated nanosystems. NATO science series, II. Mathematics, physics and chemistry. Kluwer Academic Publishers, Dordrecht, Boston, London. Vol 152, 11Google Scholar
  18. László I (2005) In: Diudea MV (ed) Nanostructures: novel architecture. Nova Science, New York, pp 193–202Google Scholar
  19. László I (2008) In: Blank V, Kulnitskiy B (eds) Carbon nanotubes and related structures. Research Singpost, Kerala, pp 121–146Google Scholar
  20. László I, Rassat A (2003) J Chem Inf Comput Sci 43:519–524CrossRefGoogle Scholar
  21. László I, Rassat A, Fowler PW, Graovac A (2001) Chem Phys Lett 342:369–374CrossRefGoogle Scholar
  22. Lovász L, Schrijver A (1999) Ann Inst Fourier (Grenoble) 49:1017–1026CrossRefGoogle Scholar
  23. Lovász L, Vesztergombi K (1999) In Halász L, Lovász L, Simonovits M, T Sós V (eds) Paul Erdős and his mathematics. Bolyai Society – Springer Verlag. Berlin, Heidelberg, New YorkGoogle Scholar
  24. Manolopoulos DE, Fowler PW (1992) J Chem Phys 96:7603–7614CrossRefGoogle Scholar
  25. Pisanski T, Shawe-Taylor JS (1993) In Technical report CSD-TR-93-20, Royal Holloway, University of London, Department of Computer Science, Egham, Surrey TW200EX, EnglandGoogle Scholar
  26. Pisanski T, Shawe-Taylor JS (2000) J Chem Inf Comput Sci 40:567–571CrossRefGoogle Scholar
  27. Pisanski T, Plestenjak B, Graovac A (1995) Croat Chim Acta 68:283–292Google Scholar
  28. Rassat A, László I, Fowler PW (2003) Chem Eur J 9:644–650CrossRefGoogle Scholar
  29. Stone AJ (1981) Inorg Chem 20:563–571CrossRefGoogle Scholar
  30. Trinajstić N (1992) Chemical graph theory. CRC Press/ Boca Raton/ Ann Arbor, London/TokyoGoogle Scholar
  31. Tutte WT (1963) Proc Lond Math Soc 13:743–768CrossRefGoogle Scholar
  32. van der Holst H (1996) Topological and spectral graph characterizations. Ph.D. Thesis, University of Amsterdam, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • István László
    • 1
  • Ante Graovac
    • 2
    • 3
    • 4
  • Tomaž Pisanski
    • 5
  • Dejan Plavšić
    • 3
  1. 1.Department of Theoretical Physics, Institute of PhysicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of SplitSplitCroatia
  3. 3.NMR CenterThe “Ruđer Bošković” InstituteZagrebCroatia
  4. 4.IMC, University of DubrovnikDubrovnikCroatia
  5. 5.Department of Theoretical Computer Science, Institute of Mathematics, Physics and MechanicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations