Bioaccumulation and Trophic Transfer

  • Pilar Rodriguez
  • Trefor B. Reynoldson


Sediments are not simply a passive sink for contaminants, on the contrary, benthic animals can both act as accumulators with subsequent transfer of materials to their predators, and through their physiological processes can transport contaminants either in solution or adsorbed to sediment particles. Worms can accumulate metals and have metabolic routes that are able to eliminate them via excretion or store them in subcellular fractions that are not toxic to the organism. Body burdens of essential metals are physiologically regulated, and show other uptake-elimination models than non-essential metals. Bioavailability of metals through adsorption on organic particles or due to the formation of sulphides, pH, or dissolved oxygen levels has been studied and may explain the frequent lack of correlation between body burden and sediment or pore water toxicant concentration. Surface adsorption of some metals into the mucous layer covering the body and contaminants in food that passes through the gut without being absorbed are confounding factors in bioaccumulation assessment that must be considered to the extent possible. Worms exposed to pesticides, PCBs, HCB, or metals, proved to be toxic to crayfish, leech and fish feeding on them, thus worms play a role in the transfer of toxicants through the food chain. Worms are also important bioturbators in the aquatic systems through their burrowing, feeding and respiratory activities, making toxicants more available to animals at higher trophic levels, even if they are not prey for those species. These results are important for environmental risk assessment when the potential for a chemical to bioaccumulate or biomagnify through the food chain is suspected. There is a considerable amount of work required to develop a full understanding of the toxicokinetics, uptake routes, assimilation efficiencies, detoxification processes, elimination rates, and organs responsible for bioaccumulation and depuration in aquatic oligochaetes.


Pore Water Sediment Concentration Body Burden Acid Volatile Sulphide Bioaccumulation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amaral AFS, Rodrigues AS (2005) Metal accumulation and apoptosis in the alimentary canal of Lumbricus terrestris as a metal biomarker. Biometals 18:199–206Google Scholar
  2. Ankley GT, Phipps GL, Leonard EN, Benoit DA, Mattson VR (1991) Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem 10:1299–1307Google Scholar
  3. Ankley GT, Cook PM, Carlson AR, Call DJ, Swenson JA, Corcoran HF, Hoke RA (1992) Bioaccumulation of PCBs from sediments by oligochaetes and fishes: comparison of laboratory and field studies. Can J Fish Aquat Sci 49:2080–2085Google Scholar
  4. Ankley GT, Leonard EN, Mattson VR (1994) Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete Lumbriculus variegatus. Water Res 28:1071–1076Google Scholar
  5. Ankley GT, Erickson RJ, Phipps GL, Mattson VR, Kosian PA, Sheedy BR, Cox JS (1995) Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. Environ Sci Technol 29:2828–2833Google Scholar
  6. Ankley GT, Erickson RJ, Sheedy BR, Kosian PA, Mattson VR, Cox JS (1997) Evaluation of models for predicting the phototoxic potency of polycyclic aromatic hydrocarbons. Aquat Toxicol 37:37–50Google Scholar
  7. ASTM (2005) Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM E1706-05, PhiladelphiaGoogle Scholar
  8. Back H, Prosi F (1985) Distribution of inorganic cations in Limnodrilus udekemianus (Oligochaeta, Tubificidae) using laser induced microprobe mass analysis, with special emphasis on heavy metals. Micron Microsc Acta 16:145–150Google Scholar
  9. Barron MG, Hansen JA, Lipton J (2002) Association between contaminant tissue residues and effects in aquatic organisms. Rev Environ Contam Toxicol 173:1–37Google Scholar
  10. Beek B, Böhling S, Bruckmann U, Franke C, Jöhncke U, Studinger G (2000) The assessment of bioaccumulation. In: Beek B (ed) The handbook of environmental chemistry, vol 2, part J, bioaccumulation. Springer, Berlin, pp 235–276Google Scholar
  11. Belden JB, Lotufo GR, Lydy MJ (2005) Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazinone in channel catfish (Ictalurus punctatus) and aquatic oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 24:1962–1967Google Scholar
  12. Bervoets L, Blust R, De-Wit M, Verheyen R (1997) Relationships between river sediment characteristics and trace metal concentration in tubificid worms and chironomid larvae. Environ Pollut 95:345–356Google Scholar
  13. Block EM, Goodnight CJ (1976) The effect of X-irradiation on the coelomic cells of the tubificid Limnodrilus hoffmeisteri. Trans Am Microsc Soc 95:23–34Google Scholar
  14. Bott TL, Standley LJ (2000) Transfer of benzo[a]pyrene and 2,2′,5,5′-tetrachlorobiphenyl from bacteria and algae to sediment-associated freshwater invertebrates. Environ Sci Technol 34:4936–4942Google Scholar
  15. Bouché ML, Habets F, Biagianti-Risbourg S, Vernet G (2000) Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Safe 46:246–251Google Scholar
  16. Bouché ML, Arnoult F, Vernet G (2003) Caudal regeneration in Tubifex tubifex (Oligochaeta, Tubificidae) following copper exposure. Invertebr Biol 122:42–51Google Scholar
  17. Bouguenec V (1992) Oligochaetes (Tubificidae and Enchytraeidae) as food in fish rearing: a review and preliminary tests. Aquaculture 102:201–217Google Scholar
  18. Bremle G, Ewald G (1995) Bioconcentration of polychlorinated biphenyls (PCBs) in chironomid larvae, oligochaete worms and fish from contaminated lake sediment. Mar Freshwater Res 46:267–273Google Scholar
  19. Brinkhurst RO, Austin MJ (1979) Assimilation by aquatic Oligochaeta. Int Rev Ges Hydrobiol 64:863–868Google Scholar
  20. Brinkhurst RO, Chua KE (1969) Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid oligochaetes. J Fish Res Bd Can 26:2659–2668Google Scholar
  21. Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667Google Scholar
  22. Brunson EL, Canfield TJ, Dwyer FJ, Ingersoll CG, Kemble NE (1998) Assessing the bioaccumulation of contaminants from sediments of the Upper Mississippi River using field-collected oligochaetes and laboratory-exposed Lumbriculus variegatus. Arch Environ Contam Toxicol 35:191–201Google Scholar
  23. Campbell PGC, Clearwater SJ, Brown PB, Fisher NS, Hogstrand C, Lopez GR, Mayer LM, Meyer JS (2005) Digestive physiology, chemistry and nutrition. In: Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA, Wood CM (eds) Toxicity of dietborne metals to aquatic organisms, Chapter 2. SETAC Press, Pensacola, pp 13–57Google Scholar
  24. Cancio I, Gwynn I, Ireland MP, Cajaraville MP (1995) The effect of sublethal lead exposure on the ultrastructure and on the distribution of acid phosphatase activity in chloragocytes of earthworms (Annelida, Oligochaeta). Histochem J 27:965–973Google Scholar
  25. Carlson AR, Phipps GL, Mattson VR, Kosian PA, Cotter AM (1991) The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environ Toxicol Chem 10:1309–1320Google Scholar
  26. Chapman PM, Churchland LM, Thomson PA, Michnowsky E (1980) Heavy metal studies with oligochaetes. In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 477–502Google Scholar
  27. Chapman PM, Allen HE, Godfredsen K, Z’graggen MN (1996) Evaluation of bioaccumulation factors in regulating metals. Environ Sci Technol 30:448A–452AGoogle Scholar
  28. Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243Google Scholar
  29. Chapman KK, Benton MJ, Brinkhurst RO, Scheuerman PR (1999) Use of the aquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spiked-artificial sediment toxicity test. Environ Toxicol 14:271–278Google Scholar
  30. Ciutat A, Anschutz P, Gerino M, Boudou A (2005a) Effects of bioturbation on cadmium transfer and distribution into freshwater sediment. Environ Toxicol Chem 24:1048–1058Google Scholar
  31. Ciutat A, Gerino M, Mesmer-Dudons N, Anschutz P, Boudou A (2005b) Cadmium bioaccumulation in Tubificidae from overlying water source and effects on bioturbation. Ecotoxicol Environ Safe 60:237–246Google Scholar
  32. Ciutat A, Weber O, Gerino M, Boudou A (2006) Stratigraphic effects of tubificids in freshwater sediments a kinetic study based on X-ray images and grain-size analysis. Acta Oecol 30:228–237Google Scholar
  33. Conder JM, Lapoint TW, Bowen AT (2004) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced metabolites in an aquatic oligochaete. Aquat Toxicol 69:199–213Google Scholar
  34. Connell DW, Bowman M, Hawker DW (1988) Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotoxicol Environ Safe 16:293–302Google Scholar
  35. Connolly JP, Pedersen CJ (1988) A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ Sci Technol 22:99–103Google Scholar
  36. Conrad AU, Comber SD, Simkiss K (2000) New method for the assessment of contaminants uptake routes in the oligochaete Lumbriculus variegatus. Bull Environ Contam Toxicol 65:16–21Google Scholar
  37. Croce V, de Angelis S, Patrolecco L, Polesello S, Valsecchi S (2005) Uptake and accumulation of sediment-associated 4 nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete). Environ Toxicol Chem 24:1165–1171Google Scholar
  38. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin RP (1991) Technical basis for establishing sediment quality criteria for non ionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1–43Google Scholar
  39. Egeler P, Römbke J, Meller M, Knacker Th, Franke C, Studinger NR (1997) Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardized laboratory conditions. Chemosphere 35:835–852Google Scholar
  40. Egeler P, Rombke J, Meller M, Knacker Th, Nagel R (1999) Bioaccumulation test with tubificid sludgeworms in artificial media. Hydrobiologia 406:271–280Google Scholar
  41. Egeler P, Meller M, Roembke J, Spoerlein P, Streit B, Nagel R (2001) Tubifex tubifex as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish. Hydrobiologia 463:171–184Google Scholar
  42. Filipowicz AB, Weinstein JE, Sanger DM (2007) Dietary transfer of fluoranthene from an estuarine oligochaete (Monopylephorus rubroniveus) to grass shrimp (Palaemonetes pugio): influence of piperonyl butoxide. Mar Environ Res 63:132–145Google Scholar
  43. Fischer E (1976) Chloragogenzelle-eleocyt transformation, induziert mit Benomyl- und Carbofuran- Vergiftung der Lumbriciden (Oligochaeta). Zool Anz 197:225–233Google Scholar
  44. Fischer E (1993) The myelo-erytroid nature of the chloragogenous-like tissues in the annelids. Comp Biochem Physiol 106A:449–453Google Scholar
  45. Fischer E, Horváth I (1976) The effect of carbofuran-toxication on the chloragogen tissue of Tubifex tubifex Müll. (Oligochaeta). Z Mikrosk Anat Forsch 4:720–736Google Scholar
  46. Fischer E, Horváth I (1977) Cytochemical studies on the cuticle and epidermis of Tubifex tubifex Müll. with special regard to the localization of polysaccharides, heavy metals and the DAB-reactivity. Histochemistry 54:259–271Google Scholar
  47. Fischer E, Molnár L (1992) Environmental aspects of the chloragogenous tissue of earthworms. Soil Biol Biochem 24:1723–1727Google Scholar
  48. Fisher SW, Chordas SW III, Landrum PF (1999) Lethal and sublethal body residues for PCB intoxication in the oligochaete, Lumbriculus variegatus. Aquat Toxicol 45:115–126Google Scholar
  49. Fleming TP, Richards KS (1982) Uptake and surface adsorption of zinc by the freshwater tubificid oligochaete T. tubifex. Comp Biochem Physiol C Comp Pharmacol 71:69–75Google Scholar
  50. Galassi S, Guzzella L, Battegazzore M, Carrieri A (1994) Biomagnification of PCBs, p, p′-DDE, and HCB in the River Po ecosystem (northern Italy). Ecotoxicol Environ Safe 29:174–186Google Scholar
  51. Giere O, Pfannkuche O (1982) Biology and ecology of marine Oligochaeta, a review. In: Barnes M (ed) Oceanography and marine biology: an annual review, 20. Aberdeen University Press, Aberdeen, pp 173–308Google Scholar
  52. Giere O, Rhode B, Dubilier N (1988) Structural peculiarities of the body wall of Tubificoides benedii (Oligochaeta) and possible relations to its life in sulphidic sediments. Zoomorphology 108:29–40Google Scholar
  53. Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium-induced production of a metallothioneinlike protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with a reproduction and growth. Environ Toxicol Chem 21:1836–1844Google Scholar
  54. Gillis PL, Dixon DG, Borgmann U, Reynoldson TB (2004) Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ Toxicol Chem 23:76–85Google Scholar
  55. Gunn AM, Hunt DTE, Winnard DA (1989) The effect of heavy metal speciation in sediment on bioavailability to tubificid worms. Hydrobiologia 188(189):487–496Google Scholar
  56. Gustavsson LM (2001) Comparative study of the cuticle in some aquatic oligochaetes (Annelida: Clitellata). J Morphol 248:185–195Google Scholar
  57. Harkey GA, Landrum PF, Klaine SJ (1994) Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment associated organic. Environ Toxicol Chem 13:1315–1329Google Scholar
  58. Harkey GA, van Hoof PL, Landrum PF (1995) Bioavailability of polycyclic hydrocarbons from a historically contaminated sediment core. Environ Toxicol Chem 14:1551–1560Google Scholar
  59. Hernandez M, Rovira JV, Antonio MT (1988) Relationship between Cu and Pb levels in sediments and dwelling tubificidae in the Jarama River (Madrid, Spain). In: Astruc M, Lester JN (eds) Heavy metals in the hydrological cycle. Selper Ltd, London, pp 531–538Google Scholar
  60. Higgins CP, McLeod PB, MacManus-Spencer LA, Luthy RG (2007) Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus. Environ Sci Technol 41:4600–4606Google Scholar
  61. Hirsch MP (1998) Bioaccumulation of silver from laboratory-spiked sediments in the oligochaete (Lumbriculus variegatus). Environ Toxicol Chem 17:605–609Google Scholar
  62. Hoffmann K, Wulf A (1993) Comparative studies of the integumentary uptake of short chain ­carboxylic acids by freshwater oligochaetes. Comp Biochem Physiol 104:169–174Google Scholar
  63. Hyötiläinen T, Oikari A (2004) Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Chemosphere 57:159–164Google Scholar
  64. Ingersoll CG (1995) Sediment tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, 2nd edn. Taylor & Francis, Washington, D.C., pp 231–255Google Scholar
  65. Ingersoll CG, Ankley GT, Benoit DA, Bronson EL, Burton GA, Dwyer FJ, Hoke R, Landrum PF, Norberg-King TJ, Winger PV (1995) Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Environ Toxicol Chem 14:1885–1894Google Scholar
  66. Ingersoll CG, Buson EL, Wang N, Dwyer FJ, Ankley GT, Mount DR, Huckins J, Petty J, Landrum PF (2003) Uptake and depuration of nonionic organic contaminants from sediment by the oligochaete, Lumbriculus variegatus. Environ Toxicol Chem 22:872–885Google Scholar
  67. Ireland MP (1983) Heavy metal uptake and tissue distribution in earthworms. In: Satchell JE (ed) Earthworm ecology from Darwin to vermiculture, Chapter 21. Chapman & Hall, London, pp 247–265Google Scholar
  68. Jamieson BGM (1981) The ultrastructure of the Oligochaeta. Academic, London, p 462Google Scholar
  69. Jernelöv A (1970) Release of methyl mercury from sediments with layers containing inorganic mercury at different depths. Limnol Oceanogr 15:958–960Google Scholar
  70. Kabir SMH, Khatoon N (1980) Toxicity of some common insecticides to Limnodrilus spp (Oligochaeta: Tubificidae). Bangladesh J Zool 8:61–67Google Scholar
  71. Kaiser M, Irmer U, Weiler K (1989) Monitoring of water quality: seasonal variation of heavy metals in sediments, suspended particulate water and tubificids of the Elbe River. Environ Technol Lett 10:845–855Google Scholar
  72. Keilty TJ, White DS, Landrum PF (1988a) Sublethal responses to endrin in sediment by Limnodrilus hoffmeisteri (Tubificidae), and in mixed-culture with Stylodrilus heringianus (Lumbriculidae). Aquat Toxicol 13:227–250Google Scholar
  73. Keilty TJ, White DS, Landrum PF (1988b) Sublethal responses to endrin in sediment by Stylodrilus heringianus (Lumbriculidae) as measured by a 137Cesium marker layer technique. Aquat Toxicol 13:251–270Google Scholar
  74. Kennedy CR (1969) Tubificid oligochaetes as food of dace Leuciscus leuciscus (L.). J Fish Biol 1:11–15Google Scholar
  75. Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112Google Scholar
  76. Klump JV, Krezoski JR, Smith ME, Kaster JL (1987) Dual tracer studies of the assimilation of an organic contaminant from sediments by deposit feeding oligochaetes. Can J Fish Aquat Sci 44:1574–1583Google Scholar
  77. Kraaij R, Mayer P, Busser FJM, van het Bolscher M, Seinen W, Tolls J (2003) Measured pore-water concentrations make equilibrium partitioning work – a data analysis. Environ Sci Technol 37:268–274Google Scholar
  78. Krantzberg G (1994) Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario. Environ Toxicol Chem 13:1685–1698Google Scholar
  79. Kukkonen J, Landrum PF (1994) Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Environ Toxicol Chem 13:1457–1468Google Scholar
  80. Kukkonen J, Landrum PF (1995a) Measuring assimilation efficiencies for sediment-bound PAH and PCB congeners by benthic organisms. Aquat Toxicol 32:75–92Google Scholar
  81. Kukkonen J, Landrum PF (1995b) Effects of sediment bound polymethylsiloxane on the bioavailability and distribution of benzo(a)pyrene in lake sediment to Lumbriculus variegatus. Environ Toxicol Chem 14:523–531Google Scholar
  82. Landrum PF, Meador JP (2002) Is the body residue a useful dose metric for assessing toxicity? SETAC Globe 3:32–34Google Scholar
  83. Landrum PF, Gedeon ML, Burton GA, Greenberg MS, Rowland CD (2002) Biological responses of Lumbriculus variegatus exposed to fluorathene-spiked sediment. Arch Environ Contam Toxicol 42:292–302Google Scholar
  84. Landrum PF, Leppänen M, Robinson SD, Gossiaux DC, Burton GA, Greenberg M, Kukkonen JVK, Eadie BJ, Lansing MB (2004a) Effect of 3,4,3′,4′-Tetrachlorobiphenyl on the reworking behavior of Lumbriculus variegatus exposed to contaminated sediment. Environ Toxicol Chem 23:178–186Google Scholar
  85. Landrum PF, Leppänen M, Robinson SD, Gossiaux DC, Burton GA, Greenberg M, Kukkonen JVK, Eadie BJ, Lansing MB (2004b) Comparing behavioural and chronic endpoints to evaluate the response of Lumbriculus variegatus to 3,4,3′,4′-tetrachlorobiphenyl sediment exposures. Environ Toxicol Chem 23:187–194Google Scholar
  86. Leibig M, Egeler P, Römbke J, Oehlmann J, Knacker T (2005) Bioaccumulation of 14C-17α-ethinylestradiol by the aquatic oligochaete Lumbriculus variegatus in spiked artificial sediment. Chemosphere 59:271–280Google Scholar
  87. Leppänen M (1995) The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Ann Zool Fennici 32:247–255Google Scholar
  88. Leppänen MT, Kukkonen JVK (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Technol 32:1503–1508Google Scholar
  89. Leppänen MT, Kukkonen JVK (2000) Fate of sediment-associated pyrene and benzo[a]pyrene in the freshwater oligochaete Lumbriculus variegatus (Muller). Aquat Toxicol 49:199–212Google Scholar
  90. Leppänen MT, Kukkonen JVK (2004) Toxicokinetics of sediment-associated polybrominated diphenylethers (flame retardants) in benthic invertebrates (Lumbriculus variegatus, Oligochaeta). Environ Toxicol Chem 23:166–172Google Scholar
  91. Loden MS (1974) Predation by chironomid (Diptera) larvae on oligochaetes. Limnol Oceanogr 19:156–159Google Scholar
  92. Loonen H, Muir DCG, Parsons JR, Govers HAJ (1997) Bioaccumulation of polychlorinated dibenzo-p-dioxins in sediment by oligochaetes: influence of exposure pathway and contact time. Environ Toxicol Chem 16:1518–1525Google Scholar
  93. Lu X, Reible DD, Fleeger JW (2004) Bioavailability and assimilation of sediment-associated benzo[a]pyrene by Ilyodrilus templetoni (Oligochaeta). Environ Toxicol Chem 23:57–64Google Scholar
  94. Lucan-Bouché ML, Biagianti-Risbourg S, Arsac F, Vernet G (1999a) Autotomy as a mechanism of decontamination used by the oligochaete Tubifex tubifex. Bull Soc Zool Fr 124:383–387Google Scholar
  95. Lucan-Bouché ML, Biagianti-Risbourg S, Arsac F, Vernet G (1999b) An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquat Toxicol 45:9–17Google Scholar
  96. Lyytikäinen M, Sormunen A, Peräniemi S, Kukkonen JVK (2001) Environmental fate and bioavailability of wood preservatives in freshwater sediments near an old sawmill site. Chemosphere 44:341–350Google Scholar
  97. Mäenpää K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77:329–338Google Scholar
  98. Mäenpää K, Sormunen AJ, Kukkonen JVK (2003) Bioaccumulation and toxicity of sediment associated herbicides (Ioxynil, Pendimethalin and Bentazone) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Ecotoxicol Environ Safe 56:398–410Google Scholar
  99. McCarty LS (1986) The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals. Environ Toxicol Chem 5:1071–1080Google Scholar
  100. McCarty LS (1991) Toxicant body residues: implications for aquatic bioassays with some organic chemicals. In: Mayes MA, Barron MG (eds) Aquatic toxicology and risk assessment, vol 14. ASTM special technical publication 1124, Philadelphia, pp 183–192Google Scholar
  101. McMurtry MJ, Rapport DJ, Chua KE (1983) Substrate selection of tubificid oligochaetes. Can J Fish Aquat Sci 40:1639–1646Google Scholar
  102. Millward RN, Fleeger JW, Reible DD, Keteles KA, Cuningham BP, Zhang L (2001) Pyrene bioaccumulation, effects of pyrene exposure on particle size selection, and fecal pyrene content I the oligochaete Limnodrilus hoffmeisteri (Tubificidae, Oligochaeta). Environ Toxicol Chem 20:1359–1366Google Scholar
  103. Morgan JE, Morgan AJ (1990) The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and four ­polluted soils. Oecologia 84:559–566Google Scholar
  104. Morgan AJ, Morgan JE, Turner M, Winter C, Yarwood A (1993) Metal relationships of ­earthworms. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. A special publication of SETAC, Chapter 17. Lewis Publ, Boca Raton, pp 333–358Google Scholar
  105. Mosleh YY, Paris-Palacios S, Couderchet M, Biagianti-Risbourg S, Vernet G (2005) Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae). Ecotoxicology 14:559–571Google Scholar
  106. Mount DR, Highland TL, Mattson VR, Dawson TD, Lott KG, Ingersoll CG (2006) Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet. Environ Toxicol Chem 25:2760–2767Google Scholar
  107. Naqvi SMZ (1973) Toxicity of twenty-three insecticides to a tubificid worm Branchiura sowerbyi from the Mississippi Delta. J Econ Entom 66:70–74Google Scholar
  108. Ng TY-T, Wood CM (2008) Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Aquat Toxicol 87:47–59Google Scholar
  109. Nikkilä A, Halme A, Kukkonen JVV (2003) Toxicokinetics, toxicity and lethal body residues of two chlorophenols in the oligochaete worm, Lumbriculus variegatus, in different sediments. Chemosphere 51:35–46Google Scholar
  110. Nuutinen S, Kukkonen JVK (1998) The effect of selenium and organic material in lake sediments on the bioaccumulation of methylmercury by Lumbriculus variegatus. Biogeochemistry 40:267–278Google Scholar
  111. OECD (2008) Bioaccumulation in sediment-dwelling benthic oligochaetes. OECD guideline for the testing of chemicals no 315Google Scholar
  112. Oliver BG (1984) Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. J Can Fish Aquat Sci 41:878–883Google Scholar
  113. Oliver BG (1987) Bio-uptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ Sci Technol 21:785–790Google Scholar
  114. Patrick EM, Loutit M (1976) Passage of metals in effluents, through bacteria, to higher organisms. Water Res 10:333–335Google Scholar
  115. Patrick EM, Loutit M (1978) Passage of metals to freshwater fish from their food. Water Res 12:395–398Google Scholar
  116. Penttinen OP, Kukkonen JVK (2000) Metabolic response of Lumbriculus variegatus to respiratory uncoupler in cold and anoxic water. Environ Toxicol Chem 19:2073–2075Google Scholar
  117. Penttinen OP, Kukkonen JVK, Pellinen J (1996) Preliminary study to compare body residues and sublethal energetic responses in benthic invertebrates exposed to sediment-bound 2,4,5-trichlorophenol. Environ Toxicol Chem 15:160–166Google Scholar
  118. Penttinen OP, Kilpi-Koski J, Jokela M, Toivainen K, Väisänen A (2008) Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegatus. J Soils Sediments 8:59–66Google Scholar
  119. Redeker E, Blust R (2004) Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modelling approach. Environ Sci Technol 38:537–543Google Scholar
  120. Redeker ES, van Campenhout K, Bervoets L, Reijnders H, Blust R (2007) Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity. Environ Pollut 148:166–175Google Scholar
  121. Rodriguez P, Martinez-Madrid M, Arrate JA, Navarro E (2001) Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463:133–140Google Scholar
  122. Rüther U, Greven H (1990) The effect of heavy metals on enchytraeids. I. Uptake from an artificial substrate and influence on food preference. Acta Biol Benrodis 2:125–131Google Scholar
  123. Sager M, Pucsko R (1991) Trace element concentrations of oligochaetes and relations to sediment characteristics in the reservoir at Altenwörth/Austria. Hydrobiologia 226:39–49Google Scholar
  124. Say PJ, Giani N (1981) The Riou Mort, a tributary to the river Lot polluted by heavy metals. II. Accumulation of zinc by oligochaetes and chironomids. Acta Oecologica 2:339–355Google Scholar
  125. Schlekat CE, McGeer JC, Blust R, Borgmann U, Brix KV, Bury N, Couilard Y, Dwyer RL, Luoma SN, Robertson S, Sappigton KG, Schoeters I, Sijm DTHM (2007) Bioaccumulation: hazard identification of metals and inorganic metal substances. In: Adams WJ, Chapman PM (eds) Assessing the hazard of metals and inorganic metal substances in aquatic and terrestrial system. SETAC Press, Pensacola, pp 55–87Google Scholar
  126. Sheedy B, Mattson VR, Cox JS, Kosian PA, Phipps GL, Ankley GT (1998) Bioconcentration of polycyclic aromatic hydrocarbons by the freshwater oligochaete Lumbriculus variegatus. Chemosphere 36:3061–3070Google Scholar
  127. Singh RK, Chavan SL, Sapkale PH (2007) Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India. Environ Monit Assess 129:471–481Google Scholar
  128. Spacie A, McCarty LS, Rand GM (1995) Bioaccumulation and bioavailability in multiphase ­systems. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, 2nd edn. Taylor & Francis, Washington, D.C., pp 493–521Google Scholar
  129. Standley LJ (1997) Effect of sediment organic matter composition on the partitioning and bioavai­lability of dieldrin to the oligochaete Lumbriculus variegatus. Environ Sci Technol 31:2577–2583Google Scholar
  130. Testerman JK (1972) Accumulation of fatty acids from sea water by marine invertebrates. Biol Bull 142:160–177Google Scholar
  131. USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. EPA 600/R-99/064Google Scholar
  132. Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (1994) Immunology of annelids. CRC Press, Boca Raton, p 299Google Scholar
  133. Vidal DE, Horne AJ (2003) Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei II: autotomy as a novel form of protection. Arch Environ Contam Toxicol 45:462–467Google Scholar
  134. Wagner G (1968) Zur Bezeihung zwischen der Besiedlungsdichte von Tubificiden und dem Nahrungsangebot im Sediment. Int Rev Ges Hydrobiol 53:715–721Google Scholar
  135. Wallace WG, Lopez GR (1996) Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries 19:923–930Google Scholar
  136. Wallace WG, Lopez GR (1997) Bioavailability of biologically sequestered cadmium and the implications of metal detoxification. Mar Ecol Prog Ser 147:149–157Google Scholar
  137. Wavre H, Brinkhurst RO (1971) Interactions between some tubificid oligochaete and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Bd Can 28:335–341Google Scholar
  138. Weinstein JE (2003) Influence of salinity on the bioaccumulation of fluoranthene to an estuarine shrimp and oligochaete. Environ Toxicol Chem 2:2932–2939Google Scholar
  139. Weinstein JE, Sanger DM, Holand AF (2003) Bioaccumulation and toxicity of fluoranthene in the estuarine oligochaete Monopylephorus rubroniveus. Ecol Environ Safe 55:278–286Google Scholar
  140. West CW, Ankley GT, Nichols JW, Elonen GE, Nessa DE (1997) Toxicity and bioaccumulation of 2,3,7,8,-tetrachlorodibenzo-p-diaoxin in long-term tests with the freshwater benthic invertebrates Chironomus tentans and Lumbriculus variegatus. Environ Toxicol Chem 16:1287–1294Google Scholar
  141. Whitten BK, Goodnight CJ (1967) The accumulation of SR-89 and CA-45 by an aquatic oligochaete. Physiol Zool 40:371–385Google Scholar
  142. Whitten BK, Goodnight CJ (1969) The role of tubificid worms in the transfer of radioactive phosphorous in an aquatic ecosystem. In: Nelson DJ, Evans FC (eds) Symposium on radioecology CFSTI National Bureau Studies. US Department Commerce, Springfield, pp 270–277Google Scholar
  143. Willuhn J, Schmitt-Wrede HP, Greven H, Wunderlich F (1994a) Cadmium-induced m-RNA encoding a non-metallothionein 25-kDa protein in Enchytraeus buchholzi (Oligochaeta). Ecotoxicol Environ Safe 29:93–100Google Scholar
  144. Willuhn J, Schmitt-Wrede HP, Greven H, Wunderlich F (1994b) cDNA cloning of a cadmium-inducible m-RNA encoding a novel cysteine-rich, non-metallothionein 25-kDa protein in an enchytraeid earthworm. J Biol Chem 269:24688–24691Google Scholar
  145. Winger PV, Lasier PJ, White DH, Seginak JT (2000) Effects of contaminants in dredge material from the lower Savannah River. Arch Environ Contam Toxicol 38:128–136Google Scholar
  146. Xie L, Lambert D, Martin C, Cain DJ, Luoma SN, Buchwalter D (2008) Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat Toxicol 86:265–271Google Scholar
  147. Zaranko DT, Griffiths RW, Kaushik NK (1997) Biomagnification of polychlorinated biphenyls through a riverine food web. Environ Toxicol Chem 16:1463–1471Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Zoology and Animal Cell Biology Faculty of Science and TechnologyUniversity of the Basque CountryBilbaoSpain
  2. 2.Acadia Centre for Estuarine Research National Water Research Institute Environment CanadaAcadia UniversityWolfvilleCanada

Personalised recommendations