Advertisement

Toxicology and Laboratory Studies

  • Pilar Rodriguez
  • Trefor B. Reynoldson
Chapter

Abstract

This chapter provides a chronological synthesis of the available literature and information on laboratory based studies of aquatic oligochaetes and has been organized into water-only vs. sediment toxicity tests, and acute vs. chronic toxicity tests. Toxicological studies have employed relatively few species. Absence of sediment in tests with aquatic oligochaetes is a source of stress and reduces realism in exposure conditions and most current toxicity work is performed in the presence of sediment. Thus, unless there is a requirement for water-only tests, for interspecies comparison of toxicity of chemical compounds, or for routine control of species sensitivity in laboratory cultures, these tests are considered inappropriate for oligochaete worms in ecological risk assessment. Field populations of several species have been demonstrated to vary genetically, and may have different tolerances to both environmental and anthropogenic stress. This suggests that test organisms should be obtained from cultures of a defined genetic strain, or alternatively the sensitivity of the populations should be intercalibrated with reference toxicants. Oligochaete worms are not uniformly more tolerant to contaminants than other test organisms. Comparative data for worms and other benthic invertebrates show that responses are species-specific and also contaminant-specific. Among the sublethal measurements, sexual reproduction seems to be the most easily standardised and informative endpoint, and has high ecological relevance, since reproductive impairment has the same long-term effect as mortality on the population. Sublethal, short-term responses such as behavioural responses (avoidance behaviour, sediment reworking and sediment borrowing) need further standardization. In the future, in situ bioassays are promising tools in environmental risk assessment but will require the use of species characteristic of particular habitats or that are suitable for reproduction and toxicity assessment under different environmental conditions.

Keywords

Toxicity Test Acide Volatile Sulphide Sediment Toxicity Sediment Extractable Metal Sediment Toxicity Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achazi RK, Chroszcz G, Duker C, Henneken M, Rothe B, Schaub K, Steudel Y (1995) The effect of fluoranthene (Fla), benzo(a)pyrene (BaP) and Cadmium (Cd) upon survival rate and life cycle parameters of two terrestrial annelids in laboratory test systems. Newsl Enchytraeidae 4:7–14Google Scholar
  2. Adams WJ (1995) Aquatic toxicology testing methods. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, Chapter 3. Lewis Publ, Boca Raton, pp 25–46Google Scholar
  3. Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol 110:149–155Google Scholar
  4. Ankley GT, Phipps GL, Leonard EN, Benoit DA, Mattson VR (1991a) Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem 10:1299–1307Google Scholar
  5. Ankley GT, Schubauer-Berigan M, Dierkes JR (1991b) Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water vs. elutriate. Environ Toxicol Chem 10:1359–1366Google Scholar
  6. Ankley GT, Benoit DA, Hoke RA, Leonard EN, West CW, Phipps GL, Mattson VR, Anderson LA (1993) Development and evaluation of test methods for benthic invertebrate and sediments: effects of flow rate and feeding on water quality and exposure conditions. Arch Environ Contam Toxicol 25:12–19Google Scholar
  7. Ankley GT, Leonard EN, Mattson VR (1994a) Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete Lumbriculus variegatus. Water Res 28:1071–1076Google Scholar
  8. Ankley GT, Collyard SA, Monson PD, Kosianm PA (1994b) Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons. Environ Toxicol Chem 13:1791–1796Google Scholar
  9. Ankley GT, Erickson RJ, Phipps GL, Mattson VR, Kosian PA, Sheedy BR, Cox JS (1995) Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. Environ Sci Technol 29:2828–2833Google Scholar
  10. Ankley GT, Erickson RJ, Sheedy BR, Kosian PA, Mattson VR, Cox JS (1997) Evaluation of models for predicting the phototoxic potency of polycyclic aromatic hydrocarbons. Aquat Toxicol 37:37–50Google Scholar
  11. Anlauf A (1994) Some characteristics of the genetic variants of Tubifex tubifex (Müller, 1774) (Oligochaeta, Tubificidae) in laboratory cultures. Hydrobiologia 278:1–6Google Scholar
  12. Anlauf A (1997) Enzyme variability of Tubifex tubifex (Müller) (Oligochaeta, Tubificidae) and seven other tubificid species. Arch Hydrobiol 139:83–100Google Scholar
  13. Anlauf A, Neumann D (1997) The genetic variability of Tubifex tubifex (Müller) in 20 populations and its relation to habitat type. Arch Hydrobiol 139:145–162Google Scholar
  14. Arrate JA, Rodriguez P, Martinez-Madrid M (2002) Effects of three chemicals on the survival and reproduction of the oligochaete worm Enchytraeus coronatus in chronic toxicity test. Pedobiologia 46:136–149Google Scholar
  15. ASTM (2005) Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM E1706-05, PhiladelphiaGoogle Scholar
  16. Bagheri EA, McLusky DS (1984) The oxygen consumption of Tubificoides benedeni (Udekem) in relation to temperature and its application to production biology. J Exp Mar Biol Ecol 78:187–197Google Scholar
  17. Bailey HC, Liu DHW (1980) Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic toxicology. ASTM Special Technical Publication 707, Philadelphia, pp 205–215Google Scholar
  18. Bauer-Hilty A, Dallinger R, Berger B (1989) Isolation and partial characterization of a cadmium-binding protein from Lumbriculus variegatus (Oligochaeta, Annelida). Comp Biochem Physiol 94C:373–379Google Scholar
  19. Benfield EF, Buikema AL Jr (1977) Review of macroinvertebrate toxicity test techniques. ASTM Symposium on Invertebrate BioassaysGoogle Scholar
  20. Benfield EF, Buikema AL Jr (1980) Synthesis of miscellaneous invertebrate toxicity tests. In: Buikema AL Jr, Cairns J Jr (eds) Aquatic invertebrate bioassays. ASTM Special Technical Publication 715, Philadelphia, pp 174–187Google Scholar
  21. Benoit DA, Phipps GL, Ankley GT (1993) A sediment testing intermittent renewal system for the automated renewal of over-lying water in toxicity tests with contaminated sediments. Water Res 27:1403–1412Google Scholar
  22. Berg K, Jonasson P (1964) Oxygen consumption of profundal lake animals at low oxygen content of the water. Hydrobiologia 26:131–143Google Scholar
  23. Berg K, Jonasson P, Ockelmann KW (1962) The respiration of some animals from profundal zone of a lake. Hydrobiologia 19:1–39Google Scholar
  24. Bervoets L, Meregallai G, De Cooman W, Goddeeris B, Blust R (2004) Caged midge larvae (Chironomus riparius) for the assessment of metal bioaccumulation from sediments in situ. Environ Toxicol Chem 23:443–454Google Scholar
  25. Bhunia F, Saha NC, Kaviraj A (2003) Effects of aniline- an aromatic amine to some freshwater organisms. Ecotoxicology 12:397–404Google Scholar
  26. Birtwell JK, Arthur DR (1980) The ecology of tubificids in the Thames Estuary with particular reference to Tubifex costatus (Claparède). In: Brinkhurst RO, Cook DG (eds) Aquatic ­oligochaete biology. Plenum Press, New York, pp 331–381Google Scholar
  27. Bouché ML, Habets F, Biagianti-Risbourg S, Vernet G (2000) Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Safe 46:246–251Google Scholar
  28. Brinkhurst RO (1986) Taxonomy of the genus Tubificoides Lastockin (Oligochaeta, Tubificidae) species with bifid setae. Can J Zool 64:1270–1279Google Scholar
  29. Brinkhurst RO, Austin MJ (1979) Assimilation by aquatic Oligochaeta. Int Rev Ges Hydrobiol 64:863–868Google Scholar
  30. Brinkhurst RO, Wetzel MJ (1984) Aquatic Oligochaeta of the world: supplement. A catalogue of new freshwater species, descriptions and revisions. Can Tech Rep Hydrogr Ocean Sci 44, 101 ppGoogle Scholar
  31. Brinkhurst RO, Chua KE, Kaushik NK (1972) Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol Oceanogr 17:122–133Google Scholar
  32. Brinkhurst RO, Chapman PM, Farrell MA (1983) A comparative study of respiration rates of some aquatic oligochaetes in relation to sublethal stress. Int Rev Ges Hydrobiol 68:683–699Google Scholar
  33. Brkovic-Popovic Y, Popovic M (1977a) Effects of heavy metals on survival and respiration rate of tubificid worms: Part I- Effects on survival. Environ Pollut 13:65–72Google Scholar
  34. Brkovic-Popovic Y, Popovic M (1977b) Effects of heavy metals on survival and respiration rate of tubificid worms: Part II- Effects on respiration rate. Environ Pollut 13:65–72Google Scholar
  35. Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667Google Scholar
  36. Brust K, Licht O, Huiltsch V, Jungmann D, Nagel R (2004) Effects of terbutryn on aufwuchs and Lumbriculus variegatus in artificial indoor streams. Environ Toxicol Chem 20:2000–2007Google Scholar
  37. Bryant V, Newbery DM, McLusky DS, Campbell R (1985) Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volulator, Macoma balthica, Tubifex costatus). Mar Ecol Prog Ser 24:129–137Google Scholar
  38. Buikema AL Jr, Cairns J Jr (1980) Aquatic invertebrate bioassay. ASTM Special Technical Publication 715, Philadelphia, 209 ppGoogle Scholar
  39. Burton GA Jr (1992) Sediment toxicity assessment. Lewis Publ, Boca Raton, 457 ppGoogle Scholar
  40. Burton GA Jr, MacPherson C (1995) Sediment toxicity testing issues and methods. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology. Lewis Publ, Boca Raton, pp 70–103Google Scholar
  41. Burton GA Jr, Nelson MK, Ingersoll CG (1992) Freshwater benthic toxicity tests. In: Burton GA (ed) Sediment toxicity assessment, Chapter 10. Lewis Publ, Boca Raton, pp 213–240Google Scholar
  42. Calabrese EJ, Baldwin LA (1998) Hormesis as a biological hypothesis. Environ Health Persp 106:357–362Google Scholar
  43. Calow P (1993) Handbook of ecotoxicology, vol 1. Blackwell, London, 478 ppGoogle Scholar
  44. Carlson AR, Phipps GL, Mattson VR, Kosian PA, Cotter AM (1991) The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environ Toxicol Chem 10:1309–1320Google Scholar
  45. Casellato S, Negrisolo P (1989) Acute and chronic effects of an anionic surfactant on some freshwater tubificid species. Hydrobiologia 180:243–252Google Scholar
  46. Casellato S, Aiello R, Negrisolo A, Seno M (1992) Long-term experiment on Branchiura sowerbyi Beddard (Oligochaeta, Tubificidae) using sediment treated with LAS (Linear Alkylbenzene Sulphonate). Hydrobiologia 232:169–173Google Scholar
  47. Chapman PM (1987) Oligochaete respiration as a measure of sediment toxicity in Puget Sound, Washington. Hydrobiologia 155:249–258Google Scholar
  48. Chapman PM (2001) Utility and relevance of aquatic oligochaetes in ecological risk assessment. Hydrobiologia 463:149–169Google Scholar
  49. Chapman PM (2002) Ecological Risk Assessment (ERA) and hormesis. Sci Total Environ 288:131–140Google Scholar
  50. Chapman PM, Brinkhurst RO (1980) Salinity tolerance in some selected aquatic oligochaetes. Int Rev Ges Hydrobiol 65:499–505Google Scholar
  51. Chapman PM, Brinkhurst RO (1981) Seasonal changes in interstitial salinities and seasonal movements of subtidal nethic invertebrates in the Fraser River Estuary, B.C. Estuar Coast Mar Sci 12:49–66Google Scholar
  52. Chapman PM, Brinkhurst RO (1984) Lethal and sublethal tolerances of aquatic oligochaetes with reference to their use as a biotic index of pollution. Hydrobiologia 115:134–144Google Scholar
  53. Chapman PM, Brinkhurst RO (1987) Hair today, gone tomorrow: induced chaetal changes in ­tubificid oligochaetes. Hydrobiologia 155:45–55Google Scholar
  54. Chapman PM, Mitchell DG (1986) Acute tolerance tests with the oligochaetes Nais communis (Naididae) and Ilyodrilus frantzi (Tubificidae). Hydrobiologia 137:61–64Google Scholar
  55. Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22Google Scholar
  56. Chapman PM, Churchland LM, Thomson PA, Michnowsky E (1980) Heavy metal studies with oligochaetes. In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 477–502Google Scholar
  57. Chapman PM, Farrell MA, Brinkhurst RO (1982a) Effects of species interactions on the survival and respiration of Limnodrilus hoffmeisteri and Tubifex tubifex (Oligochaeta, Tubificidae) exposed to various pollutants and environmental factors. Water Res 16:1405–1408Google Scholar
  58. Chapman PM, Farrell MA, Brinkhurst RO (1982b) Relative tolerances of selected aquatic ­oligochaetes to individual pollutants and environmental factors. Aquat Toxicol 2:47–67Google Scholar
  59. Chapman PM, Farrell MA, Brinkhurst RO (1982c) Relative tolerances of selected aquatic ­oligochaetes to combination of pollutants and environmental factors. Aquat Toxicol 2:69–78Google Scholar
  60. Chapman KK, Benton MJ, Brinkhurst RO, Scheuerman PR (1999) Use of the aquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spiked-artificial sediment toxicity test. Environ Toxicol 14:271–278Google Scholar
  61. Chua KE, Brinkhurst RO (1973) Evidence of interspecific interactions in the respiration of ­tubificid oligochaetes. J Fish Res Bd Can 30:617–622Google Scholar
  62. Clesceri LS, Greenberg AE, Trussell RR (eds) (1989) Toxicity test procedures in annelids. In: Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, APHA, Washington DC: 8/65-8/73Google Scholar
  63. Coler RA, Coler MS, Kostecki PT (1988) Tubificid behavior as stress indicator. Water Res 22:263–267Google Scholar
  64. Cooney JD (1995) Freshwater tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, Chapter 2, 2nd edn. Taylor & Francis, Washington, pp 71–102Google Scholar
  65. Dad NK, Qureshi SA, Pandya VK (1982) Acute toxicity of two insecticides to tubificid worms, Tubifex tubifex and Limnodrilus hoffmeisteri. Environ Int 7:361–363Google Scholar
  66. Day KE, Maguire RJ, Milani D, Batchelor SP (1998) Toxicity of tributyltin to four species of freshwater benthic invertebrates using spiked sediment bioassays. Water Qual Res J Can 33:111–132Google Scholar
  67. Dermott R, Munawar M (1992) A simple and sensitive assay for evaluation of sensitive toxicity using Lumbriculus variegatus. Hydrobiologia 235(236):407–414Google Scholar
  68. Diaz RJ, Erséus C, Boesch DF (1987) Distribution and ecology of Middle Atlantic Bight ­Oligochaeta. Hydrobiologia 155:215–225Google Scholar
  69. Didden W, Rombke J (2001) Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicol Environ Safe 50:25–43Google Scholar
  70. Ding J, Drewes CD, Hsu WH (2001) Behavioral effects of ivermectin in a freshwater oligochaete, Lumbriculus variegatus. Environ Toxicol Chem 20:1584–1590Google Scholar
  71. Drewes CD (1997) Sublethal effects of environmental toxicants on oligochaete escape reflexes. Am Zool 37:346–353Google Scholar
  72. Dubilier N, Giere O, Grieshaber MK (1994) Concomitant effects of sulfide and hypoxia on the aerobic metabolism of the marine oligochaete Tubificoides benedii. J Exp Zool 269:287–297Google Scholar
  73. Dubilier N, Giere O, Grieshaber MK (1995) Morphological and ecophysiological adaptations of the marine oligochaete Tubificoides benedii to sulfidic sediments. Am Zool 35:163–173Google Scholar
  74. Dutta TK, Kaviraj A (1996) Effects of lime acclimation on the susceptibility of two freshwater teleosts and one oligochaete worm to metallic pollutant cadmium. Folia Biol Krakow 44:143–148Google Scholar
  75. Erickson RJ, Ankley GT, DeFoe DL, Kosian PA, Makynen EA (1999) Additive toxicity of binary mixtures of phototoxic polycyclic aromatic hydrocarbons to the oligochaete Lumbriculus ­variegatus. Toxicol Appl Pharm 154:97–105Google Scholar
  76. Erséus C (1982) Taxonomic revision of the marine genus Limnodriloides (Oligochaeta, Tubificidae). Verh Naturwiss Ver Hamburg 25:207–277Google Scholar
  77. Erséus C (2005) Phylogeny of oligochaetous Clitellata. Hydrobiologia 535(536):357–372Google Scholar
  78. Ewell WS, Gorsuch JW, Kringle RO, Robillard KA, Spiegle RC (1986) Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environ Toxicol Chem 5:831–840Google Scholar
  79. Fargasová A (1994) Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotoxicol Environ Safe 27:210–213Google Scholar
  80. Fargasová A (1997) Determination of toxicity of plant growth regulators in selected aquatic organisms Daphnia magna and Tubifex tubifex. Biologia 52:405–408Google Scholar
  81. Fargasová A (1998) Comparison of effects of Tributyl-, triphenyl-, and Tribenzyltin compounds on freshwater benthos and alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 60:9–15Google Scholar
  82. Fargasová A, Kizlink J (1996) Acute toxic effects of organotin compounds on benthic organisms: Tubifex tubifex and Chironomus plumosus. Biologia 51:677–681Google Scholar
  83. Fischer E, Horvath I (1979) The effect of environmental oxygen concentration on the chloragocytes of Tubifex tubifex Müll. Zool Anz 203:283–288Google Scholar
  84. Fischer E, Molnár L (1992) Environmental aspects of the chloragogenous tissue of earthworms. Soil Biol Biochem 24:1723–1727Google Scholar
  85. Fischer E, Filip J, Molnár L (1980a) The effects of catabolic inhibitors on the oxygen-dependent nuclear volume alterations of the chloragocytes in Tubifex tubifex Müll. Zool Anz 205:269–271Google Scholar
  86. Fischer E, Filip J, Molnár L (1980b) The effect of bivalent heavy metals on the oxygen-dependent nuclear volume alterations of the chloragocytes in Tubifex tubifex Müll. Environ Pollut A 23:261–265Google Scholar
  87. Fisher JA, Beeton AM (1975) The effect of dissolved oxygen on the burrowing behaviour of Limnodrilus hoffmeisteri (Oligochaeta). Hydrobiologia 47:273–290Google Scholar
  88. Forbes VE (2000) Is hormesis an evolutionary expectation? Funct Ecol 14:12–24Google Scholar
  89. Fowler DJ, Goodnight CJ (1965) The effect of environmental factors on the respiration of Tubifex. Am Midl Nat 74:418–428Google Scholar
  90. Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance ­experiments. Mar Ecol Prog Ser 144:73–85Google Scholar
  91. Generlich O, Giere O (1996) Osmoregulation in two aquatic oligochaetes from habitat with ­different salinity and comparison to other annelids. Hydrobiologia 334:251–261Google Scholar
  92. Giere O (1980a) Tolerance and preference reactions of marine Oligochaeta in relation to their ­distribution. In: Brinkhurst RO, Cook DG (eds) Aquatic Oligochaeta biology. Plenum Press, New York, pp 385–405Google Scholar
  93. Giere O (1980b) The impact of crude oil and oil dispersants on the marine oligochaete Marionina subterranea. Cah Biol Mar 21:51–60Google Scholar
  94. Giere O (2006) Ecology and biology of marine Oligochaeta – an inventory rather than another review. Hydrobiologia 564:103–116Google Scholar
  95. Giere O, Pfannkuche O (1982) Biology and ecology of marine oligochaeta, a review. In: Barnes M (ed) Oceanography and marine biology: an annual review, vol 20. Aberdeen Univ Press, Aberdeen, pp 173–308Google Scholar
  96. Giere O, Rhode B, Dubilier N (1988) Structural peculiarities of the body wall of Tubificoides benedii (Oligochaeta) and possible relations to its life in sulphidic sediments. Zoomorphology 108:29–40Google Scholar
  97. Giere O, Preusse JH, Dubilier N (1999) Tubificoides benedii (Tubificidae, Oligochaeta) - a pioneer in hypoxic and sulfidic environments. An overview of adaptive pathways. Hydrobiologia 406:235–241Google Scholar
  98. Giesy J, Hoke R (1990) Freshwater sediment quality criteria: toxicity bioassessment. In: Baudo R, Giesy J, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publ, Boca Raton, pp 265–348Google Scholar
  99. Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium-induced production of a metallothioneinlike protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): ­correlation with a reproduction and growth. Environ Toxicol Chem 21:1836–1844Google Scholar
  100. Gillis PL, Reynoldson TB, Dixon DG (2004a) Natural variation in a metallothionein-like protein in Tubifex tubifex in the absence of metal exposure. Ecotoxicol Environ Safe 58:22–28Google Scholar
  101. Gillis PL, Dixon DG, Borgmann U, Reynoldson TB (2004b) Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the ­concentration of a metallothionein-like protein. Environ Toxicol Chem 23:76–85Google Scholar
  102. Green DWJ, Williams KA, Pascoe D (1985) Studies on the acute toxicity of pollutants to fresh­water macroinvertebrates. 2. Phenol. Arch Hydrobiol 103:75–82Google Scholar
  103. Greenberg MS, Burton GA Jr, Rowland CD (2002) Optimizing interpretation of in situ effects in riverine pollutants: impact of upwelling and downwelling. Environ Toxicol Chem 21:289–297Google Scholar
  104. Guérin C, Giani N (1996) Analytical study of the locomotor and respiration movements of tubificid worms by means of video recording. Hydrobiologia 333:63–69Google Scholar
  105. Guérin C, Giani N, Sire M (1994) Étude de la sensibilité d’Enchytraeus variatus (Oligochaeta, Enchytraeidae) à certains sels de métaux lourds en vue de son utilisation comme organisme test. Annls Limnol 30:167–178Google Scholar
  106. Hansen DJ, Berry WJ, Mahony JD, Boothman WS, Di Toro DM, Robson DL, Ankley GT, Ma D, Yan Q, Pesch CE (1996) Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations. Environ Toxicol Chem 15:2080–2094Google Scholar
  107. Hickey C, Martin M (1995) Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments. Environ Toxicol Chem 14:1401–1409Google Scholar
  108. Hoffman DJ, Rattner BA, Burton GA, Cairns J Jr (1995) Handbook of ecotoxicology. Lewis Publ, Boca Raton, 755 ppGoogle Scholar
  109. Högger CH, Ammon HU (1994) Testing the toxicity of pesticides to earthworms in laboratory and field tests. IOBC wprs Bull 17:157–178Google Scholar
  110. Hauschildt-Lillge D (1982) Long-term effects of petroleum hydrocarbons on the life cycle and productivity of the littoral oligochaete Lumbricillus lineatus. Neth J Sea Res 16:502–510Google Scholar
  111. IJC, International Join Commission (1988) Procedures for the assessment of contaminated ­sediment problems in the Great Lakes. A report by the Sediment Subcommittee, Windsor, Ontario, 140 ppGoogle Scholar
  112. Ingersoll CG (1995) Sediment tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, Chapter 8, 2nd edn. Taylor & Francis, Washington, pp 231–255Google Scholar
  113. Inoue T, Kondo K (1962) Susceptibility of Branchiura sowerbyi, Limnodrilus socialis and L. willeyi for several agricultural chemicals. Bout Kagaku 27:97–99Google Scholar
  114. Ireland MP (1983) Heavy metal uptake and tissue distribution in earthworms. In: Satchell JE (ed) Earthworm ecology from darwin to vermiculture, Chapter 21. Chapman & Hall, London, pp 247–265Google Scholar
  115. Jones JRE (1939) Antagonism between two heavy metals in their toxic action on freshwater ­animals. Proc Zool Soc Lond A 108:481–499Google Scholar
  116. Kabir SMH, Khatoon N (1980) Toxicity of some common insecticides to Limnodrilus spp. (Oligochaeta: Tubificidae). Bangladesh J Zool 8:61–67Google Scholar
  117. Karickhoff SW, Morris SW (1985) Impact of tubificid oligochaetes on pollutant transport in ­bottom sediments. Environ Sci Technol 19:51–56Google Scholar
  118. Kaster JL, Klump JV, Meyer J, Krezoski J, Smith ME (1984) Comparison of defecation rates of Limnodrilus hoffmeisteri Claparède (Tubificidae) using two different methods. Hydrobiologia 111:181–184Google Scholar
  119. Keilty TJ, Landrum PF (1990) Population specific toxicity responses by the freshwater oligochaete Stylodrilus heringianus in natural Lake Michigan sediments. Environ Toxicol Chem 9:1147–1154Google Scholar
  120. Keilty TJ, White DS, Landrum PF (1988a) Short-term lethality and sediment avoidance assays with endrin-contaminated sediment and two oligochaetes from Lake Michigan. Arch Environ Contam Toxicol 17:95–102Google Scholar
  121. Keilty TJ, White DS, Landrum PF (1988b) Sublethal responses to endrin in sediment by Limnodrilus hoffmeisteri (Tubificidae), and in mixed-culture with Stylodrilus heringianus (Lumbriculidae). Aquat Toxicol 13:227–250Google Scholar
  122. Keilty TJ, White DS, Landrum PF (1988c) Sublethal responses to endrin in sediment by Stylodrilus heringianus (Lumbriculidae) as measured by a 137Cesium marker layer technique. Aquat Toxicol 13:251–270Google Scholar
  123. Khangarot BS (1991) Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Müller). Bull Environ Contam Toxicol 46:906–912Google Scholar
  124. Khangarot BS, Rathore RS (2004) Protective action of 24 amino acids on the toxicity of copper to a freshwater tubificid worm Tubifex tubifex Müller. Water Air Soil Pollut 157:53–63Google Scholar
  125. Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112Google Scholar
  126. Klerks PL, Levinton JS (1989) Rapid evolution of metal resistance in a benthic oligochaete ­inhabiting a metal polluted site. Biol Bull 176:135–141Google Scholar
  127. Klerks PL, Levinton JS (1993) Evolution of resistance in community composition in metal-­polluted environments: a case study on Foundry Cove. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates, SETAC Special Publication Series. Lewis Publ, Boca Raton, pp 223–241Google Scholar
  128. Krezoski JR, Robbins JA, White DS (1984) Dual radiotracer measurement of zoobenthos mediated solute and particle transport in freshwater sediments. J Geophysic Res 89:7937–7947Google Scholar
  129. Kukkonen J, Landrum PF (1994) Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Environ Toxicol Chem 13:1457–1468Google Scholar
  130. Lasserre P (1971) Données écophysiologiques sur la repartition des oligochètes marins meiobenthiques. Incidence des parametres salinité, temperature, sur le metabolisme respiratoire de deux espèces euryhalines du genre Marionina Michelsen, 1889 (Enchytraeidae). Vie et Milieu (Suppl) 22:523–540Google Scholar
  131. Laughlin RB Jr, Ng J, Guard NE (1981) Hormesis: a response to low environmental concentrations of petroleum hydrocarbons. Science 211:705–707Google Scholar
  132. Learner MA, Edwards RW (1963) The toxicity of some substances to Nais (Oligochaeta). Proc Soc Wat Treat Exam 12:161–168Google Scholar
  133. Learner MA, Lochhead G, Hughes BD (1978) A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshw Biol 8:357–377Google Scholar
  134. Levinton JS, Suatoni E, Wallace W, Junkins R, Kelaher B, Allen BJ (2003) Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. PNAS 100:9889–9891Google Scholar
  135. Lotufo GR, Fleeger JW (1996) Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae). Environ Toxicol Chem 15:1508–1516Google Scholar
  136. Lucan-Bouché ML, Arsac F, Biagianti-Risbourg S, Habets F, Vernet G (1997) Étude expérimentale des effects létaux induits par le cuivre et/ou le plomb chez Tubifex tubifex. Bull Soc Zool Fr 122:389–392Google Scholar
  137. Lucan-Bouché ML, Biagianti-Risbourg S, Arsac F, Vernet G (1999a) Autotomy as a mechanism of decontamination used by the oligochaete Tubifex tubifex. Bull Soc Zool Fr 124:383–387 (in French)Google Scholar
  138. Lucan-Bouché ML, Biagianti-Risbourg S, Arsac F, Vernet G (1999b) An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquat Toxicol 45:9–17Google Scholar
  139. Luoma SM, Carter JL (1993) Understanding the toxicity of contaminants in sediments: beyond the bioassay-based paradigm. Environ Toxicol Chem 12:793–796Google Scholar
  140. Maciorowski HD, Clarke RMcV (1980) Advantages and disadvantages of using invertebrates in toxicity testing. In: Buikema AL Jr, Cairns J Jr (eds) Aquatic invertebrate bioassays. ASTM Special Technical Publication 715, Philadelphia, pp 36–47Google Scholar
  141. Maestre Z, Martinez-Madrid M, Rodriguez P (2009) Monitoring the sensitivity of the oligochaete Tubifex tubifex in laboratory cultures using three toxicants. Ecotoxicol Environ Safe 72:2083–2089Google Scholar
  142. Marchese MR, Brinkhurst RO (1996) A comparison of two tubificid oligochaete species as candidates for sublethal bioassay tests relevant to subtropical and tropical regions. Hydrobiologia 334:163–168Google Scholar
  143. Martinez DE, Levinton JS (1996) Adaptation to heavy metals in the aquatic oligochaete Limnodrilus hoffmeisteri: evidence for control by one gene. Evolution 50:1339–1343Google Scholar
  144. Martinez-Madrid M, Rodriguez P, Perez-Iglesias JI, Navarro E (1999) Sediment toxicity bioassays for assessment of polluted sites in the Nervion River (northern Spain). 2. Tubifex tubifex (Oligochaeta) reproduction sediment bioassay. Ecotoxicology 8:111–124Google Scholar
  145. Martínez-Tabché L, Mora BR, Olivan LG, Faz CG, Ortega MD (1999) Toxic effect of nickel on hemoglobin concentration of Limnodrilus hoffmeisteri in spiked sediments of trout farms. Ecotoxicol Environ Safe 42:143–149Google Scholar
  146. Martínez-Tabché L, Ortega MD, Mora BR, Faz CG, Lopez EL, Martinez MG (2001) Hemoglobin concentration and acetylcholinesterase activity of oligochaetes in relation to lead concentration in spiked sediments from Ignacio Ramirez reservoir. Ecotoxicol Environ Safe 49:76–83Google Scholar
  147. Matisoff G, Wang XS, McCall PL (1999) Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J Great Lakes Res 25:205–219Google Scholar
  148. McCrary JE, Heagler MG (1997) The use of a simultaneous multiple species acute toxicity test to compare the relative sensitivities of aquatic organisms to mercury. Environ Sci Health A Environ Sci Eng Tox Hazard Subst Control 32:73–81Google Scholar
  149. McMurtry MJ (1984) Avoidance of sublethal doses of copper and zinc by tubificid oligochaetes. J Great Lakes Res 10:267–272Google Scholar
  150. Mekenyan OG, Ankley GT, Veith GD, Call DJ (1994) QSARs for photoinduced toxicity: I. acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere 28:567–582Google Scholar
  151. Meller M, Egeler P, Rombke J, Schallnas H, Nagel R, Streit B (1998) Short term toxicity of lindane, hexachlorobenzene, and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotoxicol Environ Safe 39:10–20Google Scholar
  152. Milani D, Reynoldson TB, Borgmann U, Kolasa J (2003) The relative sensitivity of four benthic invertebrates to metals in spiked-sediments exposures and application to contaminated field sediment. Environ Toxicol Chem 22:845–854Google Scholar
  153. Milbrink G (1983) Characteristic deformities in tubificid oligochaetes inhabiting polluted bays of Lake Vänein, southern Sweden. Hydrobiologia 106:169–185Google Scholar
  154. Milbrink G (1987) Biological characterization of sediments by standardized tubificid bioassays. Hydrobiologia 155:267–275Google Scholar
  155. Mischke CC, Terhune JS, Wise DJ (2001) Acute toxicity of several chemicals to the oligochaete Dero digitata. J World Aquac Soc 32:184–188Google Scholar
  156. Monson PD, Ankley GT, Kosian PA (1995) Phototoxic response of Lumbriculus variegatus to sediments contaminated by polycyclic aromatic hydrocarbons. Environ Toxicol Chem 14:891–894Google Scholar
  157. Mosleh YY, Paris-Palacios S, Couderchet M, Biagianti-Risbourg S, Vernet G (2005) Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae). Ecotoxicology 14:559–571Google Scholar
  158. Mosleh YY, Paris-Palacios S, Biagianti-Risbourg S (2006) Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere 64:121–128Google Scholar
  159. Mudroch A, Azcue J, Mudroch P (1999) Manual of bioassessment of aquatic sediments quality. Lewis Publisher, Boca Raton, 236 ppGoogle Scholar
  160. Naqvi SMZ (1973) Toxicity of twenty-three insecticides to a tubificid worm Branchiura sowerbyi from the Mississippi Delta. J Econ Entom 66:70–74Google Scholar
  161. OECD (2007) Sediment-water lumbriculus toxicity test using spiked sediment. OECD Guideline for the Testing of Chemicals No 225Google Scholar
  162. Pasteris A, Vecchi M, Reynoldson TB, Bonomi G (2003) Toxicity of copper-spiked sediments to Tubifex tubifex (Oligochaeta, Tubificidae): a comparison of the 28-day reproductive bioassay with a 6-month cohort experiment. Aquat Toxicol 65:253–265Google Scholar
  163. Penttinen OP, Kukkonen JVK, Pellinen J (1996) Preliminary study to compare body residues and sublethal energetic responses in benthic invertebrates exposed to sediment-bound 2,4,5-trichlorophenol. Environ Toxicol Chem 15:160–166Google Scholar
  164. Persoone G, Janssen CR (1993) Freshwater invertebrate toxicity tests. In: Calow P (ed) Handbook of ecotoxicology, Chapter 4, vol 1. Blackwell, London, pp 51–65Google Scholar
  165. Peterson GS, Ankley GT, Leopard EN (1996) Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. Environ Toxicol Chem 15:2147–2155Google Scholar
  166. Phipps GL, Ankley GT, Benoit DA, Mattson VR (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ Toxicol Chem 12:269–279Google Scholar
  167. Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of three freshwater benthic ­macroinvertebrates to ten contaminants. Arch Environ Contam Toxicol 28:281–286Google Scholar
  168. Prater BL, Anderson MA (1977) A 96-hour sediment bioassay of Duluth and Superior Harbor Basins (Minnesota) using Hexagenia limbata, Asellus communis, Daphnia magna and Pimephales promelas as test organisms. Bull Environ Contam Toxicol 18:159–169Google Scholar
  169. Purschke G, Hagens M, Westheide W (1991) Ultrahistopathology of enchytraeid oligochaetes (Annelids) after exposure to pesticides- a means of identification of sublethal effects? Comp Biochem Physiol 100C:119–122Google Scholar
  170. Rand GM (1995) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, 2nd edn. Taylor & Francis, Washington, 1125 ppGoogle Scholar
  171. Rand GM, Wells PG, Mccarty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, 2nd edn. Taylor & Francis, Washington, pp 3–67Google Scholar
  172. Rathore RS, Khangarot BS (2002) Effect of temperature on the sensitivity of sludge worm Tubifex tubifex (Müller) to selected heavy metals. Ecotoxicol Environ Safe 53:27–36Google Scholar
  173. Rathore RS, Khangarot BS (2003) Effects of water hardness and metal concentration on a freshwater Tubifex tubifex Müller. Water Air Soil Pollut 142:341–356Google Scholar
  174. Redeker E, Blust R (2004) Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modelling approach. Environ Sci Technol 38:537–543Google Scholar
  175. Redeker ES, van Campenhout K, Bervoets L, Reijnders H, Blust R (2007) Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity. Environ Pollut 148:166–175Google Scholar
  176. Rehwoldt R, Wirhowsky E, Lakso L, Shaw S (1973) The acute toxicity of some heavy metal ions toward benthic organisms. Bull Environ Contam Toxicol 10:291–294Google Scholar
  177. Reible DD, Popov V, Valsaraj KT, Thibodeaux LJ, Lin F, Dikshit M, Tudaro MA, Fleeger JW (1996) Contaminant fluxes from sediment due to tubificid oligochaete bioturbation. Wat Res 30:704–714Google Scholar
  178. Reish DJ, Oshida PS (1986) Manual of Methods in Aquatic Environmental Research. Part 10. Short-term static bioassays. FAO Fish. Tech. Paper 247, 62 ppGoogle Scholar
  179. Reynoldson TB (1994) A field test of a sediment bioassay with the oligochaete worm Tubifex tubifex (Müller, 1774). Hydrobiologia 278:223–230Google Scholar
  180. Reynoldson TB, Day KE (1993) Freshwater sediments. In: Callow P (ed) Handbook of ecotoxi­cology, Chapter 6, vol 1. Blackwell, London, pp 83–100Google Scholar
  181. Reynoldson TB, Day KE (1998) Biological guidelines for the assessment of sediment quality in the Laurentian Great Lakes. National Water Research Institute (Canada), Report, pp 498–232Google Scholar
  182. Reynoldson TB, Thompson SP, Bamsey JL (1991) A sediment bioassay using the tubificid ­oligochaete worm Tubifex tubifex. Environ Toxicol Chem 10:1061–1072Google Scholar
  183. Reynoldson TB, Rosa F, Mudroch A, Day KE (1995) Investigation of the Spanish River area of the North Channel of Lake Huron. II. Benthic invertebrate community structure and sediment ­toxicity, with reference to biological sediment guidelines. NWRI Report No 95–14Google Scholar
  184. Reynoldson TB, Rodriguez P, Martinez-Madrid M (1996) A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North America Great Lakes and northern Spain. Hydrobiologia 334:199–206Google Scholar
  185. Rodriguez P, Reynoldson TB (1999) Laboratory methods and criteria for sediment bioassessment. In: Mudroch A, Azcue J, Mudroch P (eds) Manual of bioassessment of aquatic sediments ­quality, Chapter 3. Lewis Publisher, Boca Raton, pp 83–133Google Scholar
  186. Rodriguez P, Arrate J, Martinez-Madrid M, Reynoldson TB, Schumacher V, Viguri J (2006) Toxicity of Santander Bay sediments to the euryhaline freshwater oligochaete Limnodrilus hoffmeisteri. Hydrobiologia 564:157–169Google Scholar
  187. Rodriguez P, Maestre Z, Martinez-Madrid M, Reynoldson TB (2011) Evaluating the type II error rate in a sediment toxicity classification using the reference condition approach. Aquat Toxicol 101:207–213Google Scholar
  188. Rogge RW, Drewes CD (1993) Assessing sublethal neurotoxicity effects in the freshwater ­oligochaete, Lumbriculus variegatus. Aquat Toxicol 26:73–90Google Scholar
  189. Römbke J, Knacker TH (1989) Aquatic toxicity test for enchytraeids. Hydrobiologia 180:235–242Google Scholar
  190. Schubauer-Berigan MK, Ankley GT (1991) The contribution of ammonia, metals and nonpolar organic compounds to the toxicity of sediment interstitial water from an Illinois River tributary. Environ Toxicol Chem 10:925–939Google Scholar
  191. Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–159Google Scholar
  192. Sibley PK, Benoit DA, Balcer MD, Phipps GL, West CW, Hoke RA, Ankley GT (1999) In situ bioassay chamber for assessment of sediment toxicity and bioaccumulation using benthic invertebrates. Environ Toxicol Chem 18:2325–2336Google Scholar
  193. Slooff W (1983) Benthic macroinvertebrates and water quality assessment: some toxicological considerations. Aquat Toxicol 4:73–82Google Scholar
  194. Smith DP, Kennedy JH, Dickson KL (1991) An evaluation of a naidid oligochaete as a toxicity test organism. Environ Toxicol Chem 10:1459–1465Google Scholar
  195. Stebbing ARD (2000) Hormesis: interpreting the β-curve using control theory. J Appl Toxicol 20:93–101Google Scholar
  196. Sturmbauer C, Opadiya GB, Niedersträtter H, Riedmann A, Dallinger R (1999) Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol 16:967–974Google Scholar
  197. Suedel BC, Rodgers JHJ (1996) Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans and Stylaria lacustris in water-only and whole sediment exposures. Bull Environ Contam Toxicol 57:132–138Google Scholar
  198. Thompson KA, Brown DA, Chapman PM, Brinkhurst RO (1982) Histopathological effects and cadmium-binding protein synthesis in the marine oligochaete Monopylephorus cuticulatus ­following cadmium exposure. Trans Am Microsc Soc 101:10–26Google Scholar
  199. Traunspurger W, Drews C (1996) Toxicity analysis of freshwater and marine sediments with meio and macrobenthic organisms: a review. Hydrobiologia 328:215–261Google Scholar
  200. USEPA (1988) An overview of sediment quality in the United States. EPA 905/9-88-002Google Scholar
  201. van Wijngaarden RPA, Crum SJH, Decraene K, Hattink J, van Kammen A (1998) Toxicity of derosal (active ingredient carbendazim) to aquatic invertebrates. Chemosphere 37:673–683Google Scholar
  202. Vecchi M, Reynoldson TB, Pasteris A, Bonomi G (1999) Toxicity of copper-spiked sediments to Tubifex tubifex (Oligochaeta, Tubificidae): a comparison of the 28-day reproductive bioassay with an early life stage bioassay. Environ Toxicol Chem 18:1173–1179Google Scholar
  203. Veltz I, Arsac F, Biagianti-Risbourg S, Habets F, Lechenault H, Vernet G (1996) Effects of ­platinum (Pt 4+) on Lumbriculus variegatus Müller (Annelida, Oligochaeta): acute toxicity and bioaccumulation. Arch Environ Contam Toxicol 31:63–67Google Scholar
  204. Veltz-Balatre I (2000) Toxicity studies of some pollutants from the Champagne-Ardenne area on a freshwater invertebrate: Lumbriculus variegatus (Annelida, Oligochaeta). Bull Soc Zool Fr 125:333–341Google Scholar
  205. Verdonschot PFM (1981) Some notes on the ecology of aquatic oligochaetes in the Delta Region of the Netherlands. Arch Hydrobiol 92:53–70Google Scholar
  206. Verdonschot PFM, Ter Braak CJF (1994) An experimental manipulation of oligochaete communities in mesocosms treated with chlorphyrifos or nutrient additions: multivariate analyses with MonteCarlo permutation tests. Hydrobiologia 278:251–266Google Scholar
  207. Verdonschot PFM, Smies M, Spers ABJ (1982) Distribution of aquatic oligochaetes in brackish inland waters in the SW Netherlands. Hydrobiologia 89:29–38Google Scholar
  208. Vidal DE, Horne AJ (2003a) Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation of resistance among populations. Arch Environ Contam Toxicol 45:184–189Google Scholar
  209. Vidal DE, Horne AJ (2003b) Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex. Environ Toxicol Chem 22:2130–2135Google Scholar
  210. Wallace WG, Lopez GR (1996) Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries 19:923–930Google Scholar
  211. Wallace WG, Lopez GR (1997) Bioavailability of biologically sequestered cadmium and the implications of metal detoxification. Mar Ecol Prog Ser 147:149–157Google Scholar
  212. Wang XS, Matisoff G (1997) Solute transport in sediments by a large freshwater oligochaete, Branchiura sowerbyi. Environ Sci Technol 31:1926–1933Google Scholar
  213. Ward GS (1995) Saltwater tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment, Chapter 3, 2nd edn. Taylor & Francis, Washington, pp 103–133Google Scholar
  214. Wentsel R, McIntosh A, Atcinson G (1977) Sediment contamination and benthic macroinvertebrate distribution in a metal-impacted lake. Environ Pollut 14:187–193Google Scholar
  215. West CW, Ankley GT (1998) A laboratory assay to assess avoidance of contaminated sediments by the freshwater oligochaete Lumbriculus variegatus. Arch Environ Contam Toxicol 35:20–24Google Scholar
  216. West CW, Mattso VR, Leonard EN, Phipps GL, Ankley GT (1993) Comparison of the relative sensitivity of 3 benthic invertebrates to copper – contaminated sediments from the Keweenaw Waterway. Hydrobiologia 262:57–63Google Scholar
  217. Westeheide W, Bethke-Beilfuss D (1991) The sublethal enchytraeid test system: guidelines and some results. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects, Chapter 23. Elsevier, Amsterdam, pp 497–508Google Scholar
  218. Westheide W, Bethke-Beilfuß D, Gebbe J (1991) Effects of Benomyl on reproduction and population structure of enchytraeid oligochaetes (Annelida) – Sublethal test on agar and soil. Comp Biochem Physiol 100C:221–224Google Scholar
  219. White DS, Keilty TJ (1988) Burrowing avoidance assays of contaminated Detroit River sediments, using the freshwater oligochaete Stylodrilus heringianus (Lumbriculidae). Arch Environ Contam Toxicol 17:673–681Google Scholar
  220. Whitley LS (1963) Studies on the biology of Tubificidae. PhD Dissertation, Purdue University, LafayetteGoogle Scholar
  221. Whitley LS (1968) The resistance of tubificid worms to three common pollutants. Hydrobiologia 32:193–205Google Scholar
  222. Whitley LS, Sikora RA (1970) The effect of three common pollutants on the respiration rate of tubificid worms. J Water Pollut Control Fed 42:R57–R66Google Scholar
  223. Whitten BK, Goodnight CJ (1966) Toxicity of some common insecticides to tubificids. J Water Pollut Control Fed 38:227–235Google Scholar
  224. Widdows J (1993) Marine and estuarine systems. In: Callow P (ed) Handbook of ecotoxicology, vol 1. Blackwell, London, pp 145–166Google Scholar
  225. Wiederholm T, Dave G (1989) Toxicity of metal polluted sediments to Daphnia magna and Tubifex tubifex. Hydrobiologia 176(177):411–417Google Scholar
  226. Wiederholm T, Wiederholm AM, Milbrink G (1987) Bulk sediment bioassays with five species of freshwater oligochaetes. Water Air Soil Pollut 36:131–154Google Scholar
  227. Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals, vol 2. Blackwell, Oxford, 754 ppGoogle Scholar
  228. Zipperle A, Reise K (2005) Freshwater springs on intertidal sand flats cause a switch in dominance among polychaete worms. J Sea Res 54:143–150Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Zoology and Animal Cell Biology Faculty of Science and TechnologyUniversity of the Basque CountryBilbaoSpain
  2. 2.Acadia Centre for Estuarine Research National Water Research Institute Environment CanadaAcadia UniversityWolfvilleCanada

Personalised recommendations