Skip to main content

Intraoperative Monitoring for Cranial Base Tumors

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 4

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 4))

  • 1689 Accesses

Abstract

Intraoperative neurophysiological monitoring is used to guide surgery and predict the postoperative neurological function of patients. Surgery for basal neurosurgical tumors is fraught with difficulties due to the important neurovascular anatomy at risk. During these often long surgical cases, the function of the nerves and long tracts at risk can be monitored, giving the surgeon near real time feedback on how the patient is doing and what functions if any are being affected. This information is useful in trying to reduce and prevent injuries for quality control and improve patient outcomes. With the advent and effectiveness of alternative treatment strategies for many of these tumors, such as focused stereotactic radiation as primary treatment or surgery plus radiation (for planned subtotal resections), surgical outcomes need to be looked at critically; it becomes necessary to be able to perform these operations with minimal morbidity. Intraoperative monitoring is an adjunct to surgery that aids the surgeon in procedures for patients with these difficult tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagami R, Dong CC, Westerberg BD (2005) Localized transcranial electrical motor evoked potentials for monitoring cranial nerves in cranial base surgery. Neurosurgery 57(1 Suppl):78–85

    Article  PubMed  Google Scholar 

  • Allison T, Hume AL (1981) A comparative analysis of short-latency somatosensory evoked potentials in man, monkey, cat, and rat. Exp Neurol 72(3):592–611

    Article  PubMed  CAS  Google Scholar 

  • Banoub M, Tetzlaff JE, Schubert A (2003) Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99(3):716–737

    Article  PubMed  Google Scholar 

  • Brown RH, Nash CL, Berilla JA, Amaddio MD (1984) Cortical evoked potential monitoring. A system for intraoperative monitoring of spinal cord function. Spine 9:256–261

    Article  PubMed  CAS  Google Scholar 

  • Cabraja M, Stockhammer F, Mularski S, Suess O, Kombos T, Vajkoczy P (2009) Neurophysiological intraoperative monitoring in neurosurgery: aid or handicap? An international survey E2. Neurosurg Focus 27(No. 4):E2

    Article  PubMed  Google Scholar 

  • Cai YR, Xu J, Chen LH, Chi FL (2009) Electromyographic monitoring of facial nerve under different levels of neuromuscular blockade during middle ear microsurgery. Chin Med J 122(3):311–314

    PubMed  Google Scholar 

  • Cueva RA, Morris GF, Prioleau GR (1998) Direct cochlear nerve monitoring: first report on a new atraumatic, self-retaining electrode. Am J Otol 19(2):202–207

    PubMed  CAS  Google Scholar 

  • Daube JR, Harper CM (1989) Surgical monitoring of cranial and peripheral nerves. In: Desmedt JE (ed) Neuromonitoring in surgery. Elsevier, Amsterdam, pp 15–151

    Google Scholar 

  • Delgado TE, Buchheit WA, Rosenholtz HR, Chrissian S (1979) Intraoperative monitoring of facial muscle evoked responses obtained by intracranial stimulation of the facial nerve: a more accurate technique for facial nerve dissection. Neurosurgery 4:418–420

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Cheron G (1981) Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components. Electroencephalogr Clin Neurophysiol 52(6):553–570

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE, Cheron G (1982) Somatosensory evoked potentials in man: subcortical and cortical components and their neural basis. Ann N Y Acad Sci 388:388–411

    Article  PubMed  CAS  Google Scholar 

  • Dong CC, MacDonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116(3):588–596

    Article  PubMed  Google Scholar 

  • Dong C, MacDonald DB, Janusz MT (2002) Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 74:S1873–1876

    Article  PubMed  Google Scholar 

  • van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH (1999) Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesthes Analges 88(1):22–27

    Google Scholar 

  • Hatayama T, Moller AR (1998) Correlation between latency and amplitude of peak V in the brainstem auditory evoked potentials: intraoperative recordings in microvascular decompression operations. Acta Neurochir 140(7):681–687

    Article  CAS  Google Scholar 

  • Jellish WS, Leonetti JP, Buoy CM, Sincacore JM, Sawicki KJ, Macken MP (2009) Facial nerve electromyographic monitoring to predict movement in patients titrated to a standard anesthetic depth. Anesthes Analges 109(2):551–558

    Article  CAS  Google Scholar 

  • Jewett DL, Williston JS (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94(4):681–696

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Drummon JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76(4):502–509

    Article  PubMed  CAS  Google Scholar 

  • Lang EW, Beutler AS, Chesnut RM, Patel PM, Kennelly NA, Kalman CJ, Drummnd JC, Garfin SR (1996) Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine 21(14):1676–1686

    Article  PubMed  CAS  Google Scholar 

  • Legatt AD (1999) Brainstem auditory evoked potentials: methodology, interpretation, and clinical application. In: Aminoff MJ (ed) Electrodiagnosis in clinical neurology, 4th edn. Churchill Livingstone, New York, pp 451–484

    Google Scholar 

  • Legatt AD (2002) Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophys 19(5):396–408

    Article  Google Scholar 

  • Lo YL, Dan YF, Tan YE, Nurjannah S, Tan SB, Tan CT, Raman S (2006) Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol 18(3):211–214

    Article  PubMed  Google Scholar 

  • Lotto ML, Banoub M, Schubert A (2004) Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol 16(1):32–42

    Article  PubMed  Google Scholar 

  • Lyon R, Feiner J, Lieberman JA (2005) Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol 17(1):13–19

    PubMed  Google Scholar 

  • MacDonald DB (2001) Individually optimizing posterior tibial somatosensory evoked potential P37 scalp derivations for intraoperative monitoring. J Clin Neurophysiol 18(4):364–371

    Article  PubMed  CAS  Google Scholar 

  • Manninen PH, Lam AM, Nicholas JF (1985) The effects of isoflurane and isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesthes Analges 64(1):43–47

    CAS  Google Scholar 

  • Moller AR, Jannetta PJ (1983) Monitoring auditory functions during cranial nerve microvascular decompression operations by direct recording from the eighth nerve. J Neurosurg 59(3):493–499

    Article  PubMed  CAS  Google Scholar 

  • Nielsen A (1942) Acoustic tumors: with special reference to end-results and sparing of the facial nerve. Ann Surg 115:849–863

    Article  PubMed  CAS  Google Scholar 

  • Nuwer MR (1999) Spinal cord monitoring. Muscle Nerve 22:1620–1630

    Article  PubMed  CAS  Google Scholar 

  • Reinacher PC, Priebe H, Blumrich W, Zentner J, Scheufler KM (2006) The effects of stimulation pattern and sevoflurane concentration on intraoperative motor-evoked potentials. Anesthes Analges 102(3):888–895

    Article  CAS  Google Scholar 

  • Samii M, Matthies C (1997) Management of 1000 Vestibular Schwannomas (Acoustic Neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurgery 40(1):11–23

    PubMed  CAS  Google Scholar 

  • Scheufler KM, Reinacher PC, Blumrich W, Zentner J, Priebe H (2005) The modifying effects of stimulation pattern and propofol plasma concentration on motor-evoked potentials. Anesthes Analges 100(2):440–447

    Article  CAS  Google Scholar 

  • Scheufler KM, Zentner J (2002) Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg 96(3):571–579

    Article  PubMed  CAS  Google Scholar 

  • Sekhar LN, Bejjani G, Nora P, Vera PL (1995) Neurophysiologic monitoring during cranial base surgery: is it necessary? Clin Neurosurg 42:180–202

    PubMed  CAS  Google Scholar 

  • Silverman H, Willcox TO, Rosenberg SI, Seidman MD (1994) Prediction of facial nerve function following acoustic neuroma resection using intraoperative facial nerve stimulation. Laryngoscope 104:539–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryojo Akagami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Akagami, R., Dong, C., Huttunen, H. (2012). Intraoperative Monitoring for Cranial Base Tumors. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 4. Tumors of the Central Nervous System, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1706-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1706-0_31

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1705-3

  • Online ISBN: 978-94-007-1706-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics