Skip to main content

Cyclic AMP Phosphodiesterase-4 in Brain Tumor Biology: Immunochemical Analysis

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 4

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 4))

  • 1684 Accesses

Abstract

Cyclic AMP plays a significant role in the biology of brain tumors and represents an important therapeutic target. Intracellular levels of cAMP are regulated through its synthesis via adenylyl cyclases and its degradation by phosphodiesterases (PDEs). There are eleven families of PDEs (1 through 11) as well as multiple sub-families from which numerous isoforms are generated by alternate mRNA splicing. We, and others have found that specific PDE isoforms exhibit tumor promoting qualities and that PDE inhibitors possess potent anti-tumor activity. In order to investigate the molecular basis for PDE actions in brain tumor biology, we rigorously examined the patterns of PDE isoform expression. In the following chapter we focus on the PDE4 sub-family of cAMP specific hydrolases and discuss several challenges that arise when examining their patterns of expression by western blotting, immuno-histochemistry and immuno-fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen TC, Wadsten P, Su S, Rawlinson N, Hofman FM, Hill CK, Schonthal AH (2002) The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells. Cancer Biol Ther 1:268–276

    PubMed  CAS  Google Scholar 

  • Cherry JA, Davis RL (1999) Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 407:287–301

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Jin SL (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucl Acid Res Mol Biol 63:1–38

    Article  CAS  Google Scholar 

  • Drees M, Zimmermann R, Eisenbrand G (1993) 3',5'-Cyclic nucleotide phosphodiesterase in tumor cells as potential target for tumor growth inhibition. Cancer Res 53:3058–3061

    PubMed  CAS  Google Scholar 

  • Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11:1–13

    Article  PubMed  CAS  Google Scholar 

  • Furman MA, Shulman K (1977) Cyclic AMP and adenyl cyclase in brain tumors. J Neurosurg 46:477–483

    Article  PubMed  CAS  Google Scholar 

  • Goldhoff P, Warrington NM, Limbrick DD Jr, Hope A, Woerner BM, Jackson E, Perry A, Piwnica-Worms D, Rubin JB (2008) Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression. Clin Cancer Res 14:7717–7125

    Article  Google Scholar 

  • Huston E, Gall I, Houslay TM, Houslay MD (2006) Helix-1 of the cAMP-specific phosphodiesterase PDE4A1 regulates its phospholipase-D-dependent redistribution in response to release of Ca2+. J Cell Sci 119:3799–3810

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280:33178–33189

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Hill EV, Houslay MD (2006). Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 75:225–59

    Article  PubMed  CAS  Google Scholar 

  • Marko D, Pahlke G, Merz KH, Eisenbrand G (2000) Cyclic 3',5'-nucleotide phosphodiesterases: potential targets for anticancer therapy. Chem Res Toxicol 13:944–948

    Article  PubMed  CAS  Google Scholar 

  • Marko D, Romanakis K, Zankl H, Furstenberger G, Steinbauer B, Eisenbrand G (1998) Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys 28:75–101

    Article  PubMed  CAS  Google Scholar 

  • McCahill A, McSorley T, Huston E, Hill EV, Lynch MJ, Gall I, Keryer G, Lygren B, Tasken K, van Heeke G, Houslay MD (2005) In resting COS1 cells a dominant negative approach shows that specific, anchored PDE4 cAMP phosphodiesterase isoforms gate the activation, by basal cyclic AMP production, of AKAP-tethered protein kinase A type II located in the centrosomal region. Cell Signal 17:1158–1173

    Article  PubMed  CAS  Google Scholar 

  • McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC (2007) Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res 67:5248–5257

    Article  PubMed  CAS  Google Scholar 

  • Merz KH, Marko D, Regiert T, Reiss G, Frank W, Eisenbrand G (1998) Synthesis of 7-benzylamino-6-chloro-2-piperazino-4-pyrrolidinopteridine and novel derivatives free of positional isomers. Potent inhibitors of cAMP-specific phosphodiesterase and of malignant tumor cell growth. J Med Chem 41:4733–4743

    Article  PubMed  CAS  Google Scholar 

  • Ogawa R, Streiff MB, Bugayenko A, Kato GJ (2002) Inhibition of PDE4 phosphodiesterase activity induces growth suppression, apoptosis, glucocorticoid sensitivity, p53, and p21(WAF1/CIP1) proteins in human acute lymphoblastic leukemia cells. Blood 99:3390–3397

    Article  PubMed  CAS  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Pezzotta S, Giordana MT, Iuliano E, Mocchetti I, Spanu G, Sangiovanni G, Paoletti P (1983) Cyclic nucleotides in experimental and human brain tumors. J Neurooncol 1:61–67

    Article  PubMed  CAS  Google Scholar 

  • Scotland G, Houslay MD (1995) Chimeric constructs show that the unique N-terminal domain of the cyclic AMP phosphodiesterase RD1 (RNPDE4A1A; rPDE-IVA1) can confer membrane association upon the normally cytosolic protein chloramphenicol acetyltransferase. Biochem J 308 (Pt 2):673–681

    PubMed  CAS  Google Scholar 

  • Shakur Y, Pryde JG, Houslay MD (1993) Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram. Biochem J 292 (Pt 3):677–686

    PubMed  CAS  Google Scholar 

  • Siegmund B, Welsch J, Loher F, Meinhardt G, Emmerich B, Endres S, Eigler A (2001) Phosphodiesterase type 4 inhibitor suppresses expression of anti-apoptotic members of the Bcl-2 family in B-CLL cells and induces caspase-dependent apoptosis. Leukemia 15:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155:308–315

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Schneider HH (1986) Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors. Neuropharmacology 25:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Warrington NM, Woerner BM, Daginakatte GC, Dasgupta B, Perry A, Gutmann DH, Rubin JB (2007) Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res 67:8588–8595

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic amp suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Rubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Woerner, B.M., Rubin, J.B. (2012). Cyclic AMP Phosphodiesterase-4 in Brain Tumor Biology: Immunochemical Analysis. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 4. Tumors of the Central Nervous System, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1706-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1706-0_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1705-3

  • Online ISBN: 978-94-007-1706-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics