Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam

  • R. Loendersloot
  • T. H. Ooijevaar
  • L. Warnet
  • A. de Boer
  • R. Akkerman

Abstract

A Finite Element based numerical model for a vibration based damage identification method for a thin-walled slender composite structure is discussed in this chapter. The linear dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is analysed. The capabilities of the modal strain energy damage index algorithm to detect and localize a delamination is assessed. Both bending and torsion modes of the structure are used in the algorithm. Both an experimental set-up and a numerical model are discussed. Measurements are performed on an intact and an artificially delaminated structure, using a laser-vibro measuring system to determine the response to a force excitation. A commercially available Finite Element package is employed for the numerical model. The aim of the numerical model is to perform a parametric study. The study is preceded by an experimental verification of the numerical model. Subsequently, it is used to analyse the effect of the size and location of a delamination, as well as the number of data points employed, on the damage index.

Keywords

Mode Shape Evaluation Point Damage Index Frequency Response Function Structural Health Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Roman

E

modulus of elasticity [N m−2]

f

fraction [–]

F

fractional strain energy [–]

FN

natural frequency [Hz]

G

shear modulus [N m−2]

H

height of stiffener [m]

i,j

indices

I

2nd moment of inertia [m4]

J

rotational moment of inertia [m4]

l

length [m]

Ld

length of delamination [m]

Ls

start of delamination [m]

LT

total length [m]

M

momentum [N m]

n

natural mode index [–]

N

total number [–]

s

location of data lines [m]

T

torque [N m]

u

displacement [m]

U

strain energy [N m]

W1

skin flange width [m]

W2

distance to data lines [m]

x,y,z

cartesian coordinates

Subscripts

B

bending mode related value

T

torsion mode related value

thrs

threshold value

Greek

α

damage severity [–]

β

damage index [–]

ε

relative error [%]

εmax 

maximum relative error [%]

ζ

damping [N s m−1]

θ

angle [rad]

ν

Poisson’s ratio [–]

ρ

volumetric density [kg m−3]

Mathematical

| |

absolute value

\(\bar{\,}\)

mean value

\(\tilde{\,}\)

damaged variant of parameter/variable

partial derivative

d

derivative/infinitesimal part

Σ

summation

Abbreviations

EMA

Experimental modal analysis

FBG

Fibre bragg grating

FRF

Frequency response function

MSE-DI

Modal strain energy damage identification

PEKK

PolyEhterKatoneKatone

SHM

Structural health monitoring

TRL

Technology readiness level

VB

Vibration based

References

  1. 1.
    Adams, D.: Health Monitoring of Structural Materials and Components. Wiley, New York (2007) CrossRefGoogle Scholar
  2. 2.
    Alvandi, A., Cremona, C.: Assessment of vibration-based damage identification techniques. J. Sound Vib. 292(1–2), 179–202 (2006) CrossRefGoogle Scholar
  3. 3.
    Avitabile, P.: Experimental modal analysis. Sound Vib. Mag. (2001). http://www.sandv.com/downloads/0101avit.pdf
  4. 4.
    Avitabile, P.: Teaching experimental structural dynamics applications. Sound Vib. Mag. (2007). http://www.sandv.com/downloads/0711avit.pdf
  5. 5.
    Avitabile, P.: Modal space in our own little world. Tech. rep., University of Massachusetts Lowell (1998–2008). http://macl.caeds.eng.uml.edu/umlspace/mspace.html
  6. 6.
    Balageas, D., Fritzen, C.P., Güemes, A. (eds.): Structural Health Monitoring. ISTE (2006) Google Scholar
  7. 7.
    Carden, E., Fanning, P.: Vibration based condition monitoring: A review. Struct. Health Monitor. 3, 355–377 (2004) CrossRefGoogle Scholar
  8. 8.
    Choi, S., Stubbs, N.: Damage identification in structures using the time-domain response. J. Sound Vib. 275, 557–590 (2004) CrossRefGoogle Scholar
  9. 9.
    Choi, S., Park, S., Stubbs, N.: Nondestructive damage detection in structures using changes in compliance. Int. J. Solids Struct. 42, 4494 (2005) MATHCrossRefGoogle Scholar
  10. 10.
    Choi, S., Park, S., Park, N.H., Stubbs, N.: Improved fault quantification for a plate structure. J. Sound Vib. 297, 865–879 (2006) CrossRefGoogle Scholar
  11. 11.
    Cornwell, P., Doebling, S., Farrar, C.: Application of the strain energy damage detection method to plate-like structures. J. Sound Vib. 224(2), 359–374 (1999) CrossRefGoogle Scholar
  12. 12.
    Della, C., Shu, D.: Vibration of delaminated composite laminates: A review. Appl. Mech. Rev. 60(1–6), 1–20 (2007) CrossRefGoogle Scholar
  13. 13.
    Duffey, T., Doebling, S., Farrar, C., Baker, W., Rhee, W.: Vibration-based damage identification in structures exhibiting axial and torsional response. J. Vib. Acoust. 123(1), 84–91 (2001) CrossRefGoogle Scholar
  14. 14.
    Fan, W., Qiao, P.: Vibration-based damage identification methods: A review and comparative study. Struct. Health Monitor. (2010). doi: 10.1177/1475921710365419
  15. 15.
    Farrar, C., Jauregui, D.: Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Mater. Struct. 7(5), 704–719 (1998) CrossRefGoogle Scholar
  16. 16.
    Farrar, C., Jauregui, D.: Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Mater. Struct. 7(5), 720–731 (1998) CrossRefGoogle Scholar
  17. 17.
    Giurgiutiu, V.: Structural Health Monitoring: With Piezoelectric Wafer Active Sensors. Elsevier, Amsterdam (2007) Google Scholar
  18. 18.
    Glišić, B., Inaudi, D.: Fibre Optic Methods for Structural Health Monitoring. Wiley, New York (2007) Google Scholar
  19. 19.
    Grouve, W., Warnet, L., de Boer, A., Akkerman, R., Vlekken, J.: Delamination detection with fibre bragg gratings based on dynamic behaviour. Compos. Sci. Technol. 68(12), 2418–2424 (2008) CrossRefGoogle Scholar
  20. 20.
    Kim, B., Stubbs, N., Park, T.: Flexural damage index equations of a plate. J. Sound Vib. 283, 341–368 (2005) CrossRefGoogle Scholar
  21. 21.
    Kim, J.T., Stubbs, N.: Model uncertainty impact and damage-detection accuracy in plate grider. J. Struct. Eng. 121(10), 1409–1417 (1995) CrossRefGoogle Scholar
  22. 22.
    Kim, J.T., Stubbs, N.: Improved damage identification method based on modal information. J. Sound Vib. 252(2), 223–238 (2002) CrossRefGoogle Scholar
  23. 23.
    Kim, B., Stubbs, N., Park, T.: A new method to extract modal parameters using output-only responses. J. Sound Vib. 282, 215–230 (2005) CrossRefGoogle Scholar
  24. 24.
    Kumar, M., Shenoi, R., Cox, S.: Experimental validation of modal strain energies based damage identification method for a composite sandwich beam. Compos. Sci. Technol. 69, 1635–1643 (2009) CrossRefGoogle Scholar
  25. 25.
    Li, H., Yang, H., Hu, S.L.: Modal strain energy decomposition method for damage localization in 3D. J. Eng. Mech. 132(9), 941–951 (2006) CrossRefGoogle Scholar
  26. 26.
    Li, H., Fang, H., Hu, S.L.: Damage localization and severity estimate for three-dimensional frame structures. J. Sound Vib. 301, 481–494 (2007) CrossRefGoogle Scholar
  27. 27.
    Montalvão, D., Maia, N., Ribeiro, A.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Dig. 38(4), 295–326 (2006) CrossRefGoogle Scholar
  28. 28.
    NASA: Definition of technology readiness levels. http://esto.nasa.gov/files/TRL_definitions.pdf
  29. 29.
    Offringa, A., List, J., Teunissen, J., Wiersma, H.: Fiber reinforced thermoplastic butt joint development. In: Proceedings of International SAMPE Symposium and Exhibition (2008) 16p Google Scholar
  30. 30.
    Ooijevaar, T., Loendersloot, R., Warnet, L., de Boer, A., Akkerman, R.: Vibration based structural health monitoring of a composite t-beam. Compos. Struct. 92(9), 2007–2015 (2009) CrossRefGoogle Scholar
  31. 31.
    Pandey, A., Biswas, M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169(1), 3–17 (1994) MATHCrossRefGoogle Scholar
  32. 32.
    Pandey, A., Biswas, M., Samman, M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145(2), 321–332 (1991) CrossRefGoogle Scholar
  33. 33.
    Richardson, M., Schwarz, B.: Modal parameter estimation from operating data. Sound Vib. Mag., 8 (2003). http://www.sandv.com/downloads/0301rich.pdf
  34. 34.
    Schwarz, J., Richardson, M.: Experimental Modal Analysis. Vibrant Technology Inc. (1999) Google Scholar
  35. 35.
    Staszewski, W., Boller, C., Tomlinson, G. (eds.): Health Monitoring of Aerospace Structures. Wiley, New York (2004) Google Scholar
  36. 36.
    Stubbs, N., Kim, J., Farrar, C.: Field verification of a nondestructive damage localization and severity estimation algorithm. In: Proceedings of the 13th International Modal Analysis Conference, pp. 210–218 (1995) Google Scholar
  37. 37.
    Takeda, N.: Recent developments of structural health monitoring technologies for aircraft composite structures. In: Proceedings of the 26th International Congress of the Aeronautical Sciences, p. 12 (2008) Google Scholar
  38. 38.
    Toksoy, T., Aktan, A.: Bridge-condition assessment by modal flexibility. Exp. Mech. 34(3), 271–278 (1994) CrossRefGoogle Scholar
  39. 39.
    Ullah, I., Sinha, J.: Dynamic study of a composite plate with delamination. In: Proceedings of the Third International Conference on Integrity, Reliability and Failure (2009). S1145_P0506, 15p Google Scholar
  40. 40.
    de Vries, R., Lamers, E., Wijskamp, S., Rodriguez, B.V., Akkerman, R.: The university of Twente micromechanics modeller. Tech. rep., University of Twente (2004). http://www.pt.ctw.utwente.nl/organisation/tools/
  41. 41.
    Whitherell, C.: Mechanical Failure Avoidance: Strategies and Techniques. McGraw-Hill, New York (1994) Google Scholar
  42. 42.
    Worden, K., Dulieu-Barton, J.: An overview of intelligent fault detection in systems and structures. Struct. Health Monitor. 3, 85–98 (2004) CrossRefGoogle Scholar
  43. 43.
    Zimmerman, D., Kaouk, M.: Structural damage detection using a minimum rank update theory. J. Vib. Acoust. 116(2), 222–231 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Loendersloot
    • 1
  • T. H. Ooijevaar
    • 2
  • L. Warnet
    • 2
  • A. de Boer
    • 1
  • R. Akkerman
    • 2
  1. 1.Engineering Technology, Applied MechanicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Engineering Technology, Production TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations