A Numerical and Experimental Analysis for the Active Vibration Control of a Concrete Placing Boom

  • G. Cazzulani
  • M. Ferrari
  • F. Resta
  • F. Ripamonti


Concrete placing booms are subjected to vibrations causing an increase of mechanical stress and a reduction of the boom lifetime. The aim of this paper is the development of an active control methodology in order to suppress boom vibrations using the same actuators performing the boom large motion. The control logic is based on two contributions, a feed-forward and a feed-back one. In this work, a nonlinear flexible multibody model has been created in order to simulate the dynamic behavior of the boom. Moreover, this model has been used in order to develop and test the control logic. Finally the control methodology has been validated on an experimental test rig.


Modal Control Modal Shape Control Force Control Logic Gain Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research has been developed with the financial support of CIFA S.p.A.


  1. 1.
    Abdel-Rohman, M.: Optimal design of active TMD for buildings control. Build. Environ. 19(3), 191–195 (1984) CrossRefGoogle Scholar
  2. 2.
    Abdel-Rohman, M., John, M.J.: Control of wind-induced nonlinear oscillations in suspension bridges using multiple semi-active tuned mass damper. J. Vib. Control 12(9), 1011–1046 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balas, M.J.: Active control of flexible systems. J. Optim. Theory Appl. 25(3), 415–436 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Balas, M.J.: Feedback control of flexible systems. IEEE Trans. Autom. Control AC-23(4), 673–679 (1978) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fang, J.Q., Li, Q.S., Jeary, A.P.: Modified independent modal space control of m.d.o.f. systems. J. Sound Vib. 261(3), 421–441 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goh, C.J., Caughey, T.K.: On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. Int. J. Control 41(3), 787–802 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Igusa, T., Xu, K.: Vibration control using multiple tuned mass dampers. J. Sound Vib. 175(4), 491–503 (1994) zbMATHCrossRefGoogle Scholar
  8. 8.
    Inman, D.J.: Active modal control for smart structures. Philos. Trans. R. Soc. 359, 205–219 (2001) zbMATHCrossRefGoogle Scholar
  9. 9.
    Juloski, A.L., Heemels, W.P.M.H., Weiland, S.: Observer design for a class of piecewise linear systems. Int. J. Robust Nonlinear Control 17(15), 1387–1404 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kim, M.H., Inman, D.J.: Reduction of observation spillover in vibration suppression using a sliding mode observer. J. Vib. Control 7(7), 1087–1105 (2001) zbMATHCrossRefGoogle Scholar
  11. 11.
    Lee, C.K., Moon, F.C.: Modal sensors/actuators. J. Appl. Mech. 57(2), 434–441 (1990) CrossRefGoogle Scholar
  12. 12.
    Meirovitch, L., Baruh, H.: Optimal control of damped flexible gyroscopic systems. J. Guid. Control Dyn. 4(21), 157–163 (1981) zbMATHCrossRefGoogle Scholar
  13. 13.
    Meirovitch, L., Baruh, H.: Robustness of the independent modal-space control method. J. Guid. Control Dyn. 6(1), 20–25 (1983) zbMATHCrossRefGoogle Scholar
  14. 14.
    Meirovitch, L., Baruh, H.: Nonlinear control of an experimental beam by IMSC. J. Guid. Control Dyn. 7(4), 437–442 (1984) CrossRefGoogle Scholar
  15. 15.
    Resta, F., Ripamonti, F., Cazzulani, G., Ferrari, M.: Independent modal control for nonlinear flexible structures: An experimental test rig. J. Sound Vib. 329(8), 961–972 (2010) CrossRefGoogle Scholar
  16. 16.
    Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998) zbMATHCrossRefGoogle Scholar
  18. 18.
    Singh, S.P., Pruthi, H.S., Agarwal, V.P.: Efficient modal control strategies for active control of vibrations. J. Sound Vib. 262(3), 563–575 (2003) CrossRefGoogle Scholar
  19. 19.
    Tzou, H.S., Tseng, C.I.: Distributed modal identification and vibration control of continua: Piezoelectric finite element formulation and analysis. J. Dyn. Syst. Meas. Contr. Trans. ASME 113(3), 500–505 (1991) CrossRefGoogle Scholar
  20. 20.
    Wang, D.A., Huang, Y.M.: Modal space vibration control of a beam by using the feedforward and feedback control loops. Int. J. Mech. Sci. 44(1), 1–19 (2002) zbMATHCrossRefGoogle Scholar
  21. 21.
    Warburton, G.B., Ayorinde, E.O.: Optimum absorber parameters for simple systems. Earthquake Eng. Struct. Dyn. 8, 197–217 (1980) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Cazzulani
    • 1
  • M. Ferrari
    • 1
  • F. Resta
    • 1
  • F. Ripamonti
    • 1
  1. 1.Mechanical Engineering DepartmentPolitecnico di MilanoMilanItaly

Personalised recommendations