Skip to main content

Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration

  • Chapter
Book cover Vibration and Structural Acoustics Analysis

Abstract

In this chapter, a method based on an autoregressive model in a short-time scheme is developed for the modal analysis of vibrating structures whose properties may vary with time and is called Short-Time AutoRegressive (STAR) method. This new method allows for the successful modeling and identification of an output-only modal analysis. The originality of the proposed method lies in its specific handling of non-stationary vibrations, which allows the tracking of modal parameter changes in time. This chapter presents an update of the model with respect to model order and a noise-to-signal based criterion for the selection of the minimum model order. A length equal to four times the period of the lowest natural frequency has been numerically found to be efficient for the data block size and may be recommended for experimental applications. To validate the method, a system with three degrees of freedom is first simulated under a random excitation, and both stationary and non-stationary vibrations are considered. The method is finally applied on the real multichannel data measured on an experimental steel plate emerging from water, and is compared to the conventional Short-Time Fourier Transform (STFT) method. It is shown that the proposed method outperforms in terms of frequency identification, whatever the non-stationary behaviour (either slow or abrupt change) due to the added mass effect of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basseville, M.: Detecting changes in signals and systems—A survey. Automatica 24(3), 309–326 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basseville, M., Benveniste, A., Gach-Devauchelle, B., Goursat, M., Bonnecase, D., Dorey, P., Prevosto, M., Olagnon, M.: Damage monitoring in vibration mechanics: Issues in diagnostics and predictive maintenance. Mech. Syst. Signal Process. 7(5), 401–423 (1993)

    Article  Google Scholar 

  3. Bellizzi, S., Guillemain, P., Kronland-Martinet, R.: Identification of coupled nonlinear modes from free vibrations using time-frequency representations. J. Sound Vib. 243(2), 191–213 (2001)

    Article  Google Scholar 

  4. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. San Francisco, Holden-Day (1970) 575p

    Google Scholar 

  5. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Wiley, New York (2000) 562p

    Google Scholar 

  6. Fassois, S.D.: Parametric identification of vibrating structures. In: Braun, S.G., Ewins, D.J., Rao, S.S. (eds.) Encyclopedia of Vibration, pp. 673–685. Academic Press, New York (2001)

    Chapter  Google Scholar 

  7. Gabor, D.: Theory of communication. J. IEEE (London) 93, 429–457 (1946)

    Google Scholar 

  8. Gagnon, M., Tahan, S.A., Coutu, A., Thomas, M.: Operational modal analysis with harmonic excitations: Application to a hydraulic turbine. In: Proceedings of the 24th Seminar on Machinery Vibration, pp. 320–329. Canadian Machinery Vibration Association, Montreal, ISBN 2-921145-61-8 (2006)

    Google Scholar 

  9. Gang, L., Wilkes, D.M., Cadzow, J.A.: ARMA model order estimation based on the eigenvalues of covariance matrix. Trans. Signal Process. 41(10), 3003–3009 (1993)

    Article  MATH  Google Scholar 

  10. Golub, G., Van Loan, C.: Matrix Computations. London. Johns Hopkins University Press, Baltimore (1996) 732p

    Google Scholar 

  11. Hammond, J.K., White, P.R.: The analysis of non-stationary signals using time-frequency methods. J. Sound Vib. 190, 419–447 (1996)

    Article  Google Scholar 

  12. Hannan, E.J.: The estimation of the order of an ARMA process. Ann. Stat. 8(5), 1071–1081 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X., De Roeck, G.: System identification of mechanical structures by a high-order multivariate autoregressive model. Comput. Struct. 64(1–4), 341–351 (1997)

    Article  MATH  Google Scholar 

  14. Hermans, L., Van der Auweraer, H.: Modal testing and analysis of structures under operational conditions: Industrial applications. Mech. Syst. Signal Process. 13(2), 193–216 (1999)

    Article  Google Scholar 

  15. Huang, C.S.: Structural identification from ambient vibration measurement using the multivariate AR model. J. Sound Vib. 241(3), 337–359 (2001)

    Article  Google Scholar 

  16. Li, C.S., Ko, W.J., Lin, H.T., Shyu, R.J.: Vector autoregressive modal analysis with application to ship structures. J. Sound Vib. 167(1), 1–15 (1993)

    Article  MATH  Google Scholar 

  17. Li, J., Liu, Z., Thomas, M., Fihey, J.L.: Dynamic analysis of a planar manipulator with flexible joints and links. In: Fifth International Conference on Industrial Automation, Montréal, ROB06 (2007) 4p

    Google Scholar 

  18. Lutkepohl, H.: Introduction to Multiple Time Series Analysis, 2nd edn. Springer, Berlin, (1993) 545p

    Book  Google Scholar 

  19. Mahon, M., Sibul, L., Valenzuela, H.: A sliding window update for the basis matrix of the QR-decomposition. IEEE Trans. Signal Process. 41, 1951–1953 (1993)

    Article  MATH  Google Scholar 

  20. Maia, N.M.M., Silva, J.M.M.: Modal analysis identification techniques. Philos. Trans. R. Soc. Lond. A 359, 29–40 (2001)

    Article  MATH  Google Scholar 

  21. Mohanty, P., Rixen, D.J.: Operational modal analysis in the presence of harmonic excitation. J. Sound Vib. 270, 93–109 (2004)

    Article  Google Scholar 

  22. Owen, J.S., Eccles, B.J., Choo, B.S., Woodings, M.A.: The application of auto-regressive time series modelling for the time-frequency analysis of civil engineering structures. Eng. Struct. 23, 521–536 (2001)

    Article  Google Scholar 

  23. Pandit, S.M.: Modal and Spectrum Analysis: Data Dependent Systems in State Space. John Wiley and Sons, New York (1991) 415p

    MATH  Google Scholar 

  24. Poulimenos, A.G., Fassois, S.D.: Non-stationary vibration modelling and analysis via functional series TARMA models. In: 5th International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques (Surveillance 5), Senlis, France (2004) 10p

    Google Scholar 

  25. Poulimenos, A.G., Fassois, S.D.: Parametric time-domain methods for non-stationary random vibration modelling and analysis—A critical survey and comparison. Mech. Syst. Signal Process. 20(4), 763–816 (2006)

    Article  Google Scholar 

  26. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  27. Safizadeh, M.S., Lakis, A.A., Thomas, M.: Using short time Fourier transform in machinery fault diagnosis. Int. J. Cond. Monitor. Diagn. Eng. Manag. 3(1), 5–16 (2000)

    Google Scholar 

  28. Sinha, J.K., Singh, S., Rama, Rao A.: Added mass and damping of submerged perforated plates. J. Sound Vib. 260(3), 549–564 (2003)

    Article  Google Scholar 

  29. Smail, M., Thomas, M., Lakis, A.A.: Assessment of optimal ARMA model orders for modal analysis. Mech. Syst. Signal Process. 13(5), 803–819 (1999)

    Article  Google Scholar 

  30. Smail, M., Thomas, M., Lakis, A.A.: Use of ARMA model for detecting cracks in rotors. In: Proceedings of the 3rd Industrial Automation International Conference AIAI, Montreal, pp. 21.1–21.4 (1999) (in French)

    Google Scholar 

  31. Strobach, P., Goryn, D.: A computation of the sliding window recursive QR decomposition. In: Proc. ICASSP, pp. 29–32 (1993)

    Google Scholar 

  32. Thomas, M., Abassi, K., Lakis, A.A., Marcouiller, L.: Operational modal analysis of a structure subjected to a turbulent flow. In: Proceedings of the 23rd Seminar on Machinery Vibration. Canadian Machinery Vibration Association, Edmonton (2005) 10p

    Google Scholar 

  33. Uhl, T.: Identification of modal parameters for non-stationary mechanical systems. Arch. Appl. Mech. 74, 878–889 (2005)

    Article  MATH  Google Scholar 

  34. Vu, H.V., Thomas, M., Lakis, A.A.: Operational modal analysis in time domain. In: Proceedings of the 24th Seminar on Machinery Vibration, pp. 330–343. Canadian Machinery Vibration Association, Montreal, ISBN 2-921145-61-8 (2006)

    Google Scholar 

  35. Vu, H.V., Thomas, M., Lakis, A.A., Marcouiller, L.: Identification of added mass on submerged vibrated plates. In: Proceedings of the 25th Seminar on Machinery Vibration, pp. 40.1–40.15. Canadian Machinery Vibration Association, St John (2007)

    Google Scholar 

  36. Vu, H.V., Thomas, M., Lakis, A.A., Marcouiller, L.: Identification of modal parameters by experimental operational modal analysis for the assessment of bridge rehabilitation. In: Proceedings of International Operational Modal Analysis Conference (IOMAC 2007), Copenhagen, Denmark, pp. 133–142 (2007)

    Google Scholar 

  37. Vu, H.V., Thomas, M., Lakis, A.A., Marcouiller, L.: Online monitoring of varying modal parameters by operating modal analysis and model updating. In: CIRI2009, Reims, France (2009) 18p

    Google Scholar 

  38. Wahab, M.M.A., De Roeck, G.: An effective method for selecting physical modes by vector autoregressive models. Mech. Syst. Signal Process. 13(3), 449–474 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The support of NSERC (Natural Sciences and Engineering Research Council of Canada) through Research Cooperative grants is gratefully acknowledged. The authors would like to thank Hydro-Quebec’s Research Institute for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.-H. Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vu, VH., Thomas, M., Lakis, A.A., Marcouiller, L. (2011). Short-Time Autoregressive (STAR) Modeling for Operational Modal Analysis of Non-stationary Vibration. In: Vasques, C., Dias Rodrigues, J. (eds) Vibration and Structural Acoustics Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1703-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1703-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1702-2

  • Online ISBN: 978-94-007-1703-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics