Advertisement

Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches

  • M. Collet
  • M. Ouisse
  • K. A. Cunefare
  • M. Ruzzene
  • B. Beck
  • L. Airoldi
  • F. Casadei

Abstract

This chapter proposes a synthesis of different new methodologies for developing a distributed, integrated shunted piezo composite for beams and plates applications able to modify the structural vibro acoustical impedance of the passive supporting structure so as to absorb or reflect incidental power flow. This design implements tailored structural responses, through integrated passive and active features, and offers the potential for higher levels of vibration isolation as compared to current designs. Novel active and passive shunting configurations will be investigated to reduce vibrations such as distributed Resistance Inductance and Resistance with negative Capacitance circuits.

Keywords

Power Flow Micro Electro Mechanical System Smart Structure Shunt Circuit Flexural Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by a collaborative research agreement (ANR NT09 617542) between Georgia Tech, FEMTO-ST Institute and Ecole Centrale de Lyon. We gratefully acknowledge Georgia Tech and the French ANR and CNRS for supporting such international collaborations.

References

  1. 1.
    Agnes, G.S.: Active/passive piezoelectric vibration suppression. In: Johnson, C.D. (ed.) Proc. SPIE, vol. 2193, pp. 24–34 (1994) Google Scholar
  2. 2.
    Banerjee, J.R., Sobey, A.J.: Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. Int. J. Solids Struct. 42(8), 2181–2197 (2005) CrossRefGoogle Scholar
  3. 3.
    Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling Estimation and Control. Masson and Wiley (1996) Google Scholar
  4. 4.
    Beck, B., Cunefare, K.A., Ruzzene, M.: Broadband vibration suppression assessment of negative impedance shunts. In: Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS08), vol. 1, pp. 491–500 (2008) Google Scholar
  5. 5.
    Becker, J., Fein, O., Maess, M., Gaul, L.: Finite element-based analysis of shunted piezoelectric structures for vibration damping. Comput. Struct. 84(31–32), 2340–2350 (2006) CrossRefGoogle Scholar
  6. 6.
    Behrens, S., Fleming, A.J., Moheimani, S.O.R.: New method for multiple-mode shunt damping of structural vibration using a single piezoelectric transducer. In: Inman, D. (ed.) Smart Structures and Materials 2001: Damping and Isolation. Proc. SPIE, vol. 4331, pp. 239–250 (2001) CrossRefGoogle Scholar
  7. 7.
    Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(1–3), 347–363 (2000) CrossRefGoogle Scholar
  8. 8.
    Bernadou, M., Haenel, C.: Modelisation and numerical approximation of piezoelectric thin shell. Part II: approximation by finite element methods and numerical experiments. Comput. Methods Appl. Mech. Eng. 192(37–38), 4045–4073 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1946) zbMATHGoogle Scholar
  10. 10.
    Casadei, F., Ruzzene, M., Beck, B., Cunefare, K.: Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches. In: Proceedings of SPIE, vol. 7288, 72881J (2009) Google Scholar
  11. 11.
    Casadei, F., Dozio, L., Ruzzene, M., Cunefare, K.: Periodic shunted arrays for the control of noise radiation in an enclosure. J. Sound Vib. 329(18), 3632–3646 (2010) CrossRefGoogle Scholar
  12. 12.
    Casadei, F., Ruzzene, M., Dozio, L., Cunefare, K.A.: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Mater. Struct. 19(1), 13 (2010) CrossRefGoogle Scholar
  13. 13.
    Chevallier, G., Ghorbel, S., Benjeddou, A.: A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 17(6), 11 (2008) CrossRefGoogle Scholar
  14. 14.
    Collet, M.: Shape optimization of piezoelectric sensors dealing with spill-over instabilities IEEE Trans. Control Syst. Technol. 9(4), 654–663 (2001) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Collet, M., Cunefare, K.A.: Modal synthesis and dynamical condensation methods for accurate piezoelectric systems impedance computation. J. Intell. Mater. Syst. Struct. 19(11), 1251–1269 (2008) CrossRefGoogle Scholar
  16. 16.
    Collet, M., Walter, V., Delobelle, P.: Active damping of a micro-cantilever piezo-composite beam. J. Sound Vib. 260(3), 453–476 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Collet, M., Cunefare, K.A., Ichchou, M.N.: Wave motion optimization in periodically distributed shunted piezocomposite beam structures. J. Intell. Mater. Syst. Struct. 20(7), 787–808 (2009) CrossRefGoogle Scholar
  18. 18.
    Corr, L.R., Clark, W.W.: Comparison of low frequency piezoelectric switching shunt techniques for structural damping. Smart Mater. Struct. 11(3), 370–376 (2002) CrossRefGoogle Scholar
  19. 19.
    Crawley, E.F.: Intelligent structures for aerospace: a technology overview and assessment. AIAA J. 32(8), 1689–1699 (1994) CrossRefGoogle Scholar
  20. 20.
    Cross, C.J., Fleeter, S.: Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations. Smart Mater. Struct. 11(2), 239–248 (2002) CrossRefGoogle Scholar
  21. 21.
    Cunefare, K.A.: Negative capacitance shunts for vibration suppression: wave based tuning and reactive input power. In: Proceedings of Active 2006, Adelaide, Australia (2006) Google Scholar
  22. 22.
    dell’Isola, F., Maurini, C., Porfiri, M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13(2), 299–308 (2004) CrossRefGoogle Scholar
  23. 23.
    Denke, P.H., Eide, G.R., Pickard, J.: Matrix difference equation analysis of vibrating periodic structures. AIAA J. 13(2), 160–166 (1975) CrossRefGoogle Scholar
  24. 24.
    Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294(1–2), 205–220 (2006) CrossRefGoogle Scholar
  25. 25.
    Fernandes, A., Pouget, J.: Analytical and numerical modelling of laminated composites with piezoelectric elements. J. Intell. Mater. Syst. Struct. 15(9–10), 753–761 (2004) CrossRefGoogle Scholar
  26. 26.
    Fleming, A.J., Belirens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt-damping circuits. Electron. Lett. 36(18), 1525–1526 (2000) CrossRefGoogle Scholar
  27. 27.
    Fleming, A.J., Behrens, S., Moheimani, S.O.R.: Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Mater. Struct. 12(1), 57–64 (2003) CrossRefGoogle Scholar
  28. 28.
    Fleming, A.J., Moheimani, S.O.R.: Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits. J. Intell. Mater. Syst. Struct. 15(2), 77–92 (2004) CrossRefGoogle Scholar
  29. 29.
    Forward, R.L.: Electromechanical transducer-coupled mechanical structure with negative capacitance compensation circuit. United States Patent 4158787, 1979 Google Scholar
  30. 30.
    Fukada, E., Date, M., Kimura, K.: Sound isolation by piezoelectric polymer films connected with negative capacitance circuits. In: Proceedings of 11th International Symposium on Electrets, vol. 1, pp. 223–226 (2002) CrossRefGoogle Scholar
  31. 31.
    Fuller, C.R., Fahy, F.J.: Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 81(4), 501–518 (1982) CrossRefGoogle Scholar
  32. 32.
    Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991) Google Scholar
  33. 33.
    Ha, S.K.: Finite element analysis of sandwich plates: an overview. Comput. Struct. 37(1), 1–21 (1990) CrossRefGoogle Scholar
  34. 34.
    Hac, A., Liu, L.: Sensor and actuator location in motion control of flexible structures. J. Sound Vib. 167(2), 239–261 (1993) zbMATHCrossRefGoogle Scholar
  35. 35.
    Hagood, N.W., von Flotow, A.H.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991) CrossRefGoogle Scholar
  36. 36.
    Houillon, L., Ichchou, M.N., Jezequel, L.: Wave motion in thin-walled structures. J. Sound Vib. 281(3–5), 483–507 (2005) CrossRefGoogle Scholar
  37. 37.
    Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995) zbMATHCrossRefGoogle Scholar
  38. 38.
    Hurlebaus, S., Gaul, L.: Smart structure dynamics. Mech. Syst. Signal Process. 20(2), 255–281 (2006) CrossRefGoogle Scholar
  39. 39.
    Ichchou, M.N., Akrout, S., Mencik, J.M.: Guided waves group and energy velocities via finite elements. J. Sound Vib. 305(4–5), 931–944 (2007) CrossRefGoogle Scholar
  40. 40.
    Kogl, M., Bucalem, M.L.: Analysis of smart laminates using piezoelectric mitc plate and shell elements. Comput. Struct. 83(15–16), 1153–1163 (2005) CrossRefGoogle Scholar
  41. 41.
    Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I. J. Acoust. Soc. Am. 87(3), 1144–1157 (1990) CrossRefGoogle Scholar
  42. 42.
    Lee, C.K., Moon, F.C.: Laminated piezopolymer plates for torsion and bending sensors and actuators. J. Acoust. Soc. Am. 87(3), 2432–2439 (1989) CrossRefGoogle Scholar
  43. 43.
    Lee, C.K., Chiang, W.W., O’Sullivan, T.C.: Piezoelectric modal sensor/actuator pairs for critical active damping vibration control. J. Acoust. Soc. Am. 90(1), 374–384 (1991) CrossRefGoogle Scholar
  44. 44.
    Lin, M.W., Abatan, A.O., Rogers, C.A.: Application of commercial finite element codes for the analysis of induced strain-actuated structures. J. Intell. Mater. Syst. Struct. 5(6), 869–875 (1994) CrossRefGoogle Scholar
  45. 45.
    Mackerle, J.: Finite element linear and nonlinear static and dynamic analysis of structural elements: a bibliography (1992–1995). Eng. Comput. 14(4), 347–440 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Mahapatra, R.D., Singhal, A., Gopalakrishnan, S.: A higher-order finite waveguide model for spectral analysis of composite structures. Comput. Methods Appl. Mech. Eng. 195(9–12), 1116–1135 (2006) zbMATHCrossRefGoogle Scholar
  47. 47.
    Maurini, C., dell’Isola, F., Pouget, J.: On model of layered piezoelectric beam for passive vibration control. J. Phys. IV 115(1), 307–316 (2004) Google Scholar
  48. 48.
    Mead, D.J.: A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J. Sound Vib. 27(2), 235–260 (1973) zbMATHCrossRefGoogle Scholar
  49. 49.
    Mencik, J.M., Ichchou, M.N.: Multi-mode propagation and diffusion in structures through finite elements. Eur. J. Mech. A 24(5), 877–898 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Mencik, J.M., Ichchou, M.N.: A substructuring technique for finite element wave propagation in multi-layered systems. Comput. Methods Appl. Mech. Eng. 197(6–8), 505–523 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Moheimani, S.O.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, Berlin (2006) zbMATHGoogle Scholar
  52. 52.
    Monnier, P., Collet, M.: Definition of the mechanical design parameters to optimize efficiency of integral force feedback active damping strategy. J. Struct. Control Health Monitor. 12(1), 65–89 (2005) CrossRefGoogle Scholar
  53. 53.
    Neubauer, M., Oleskiewicz, R., Popp, K., Krzyzynski, T.: Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance. J. Sound Vib. 298(1–2), 84–107 (2006) CrossRefGoogle Scholar
  54. 54.
    Noor, A.K.: Bibliography of books and monographs on finite element technology. Appl. Mech. Rev. 44(1), 307–317 (1991) CrossRefGoogle Scholar
  55. 55.
    Ohayon, R., Soize, C.: Structural Acoustics and Vibration. Academic Press, San Diego (2001) Google Scholar
  56. 56.
    Park, C., Baz, A.: Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11(3), 331–346 (2005) zbMATHCrossRefGoogle Scholar
  57. 57.
    Park, J., Palumbo, D.L.: A new approach to identify optimal of shunting elements for maximum damping of structural vibration using piezoelectrical patches. In: Active 2004, pp. 4–34 (2004) Google Scholar
  58. 58.
    Preumont, A.: Vibration Control of Active Structures: An Introduction. Springer, Berlin (2002) zbMATHGoogle Scholar
  59. 59.
    Rao, S.S., Sunar, M.: Piezoelectricity and its use in the disturbance sensing and control of flexible structures: a survey. Appl. Mech. Rev. 47(4), 113–123 (1994) CrossRefGoogle Scholar
  60. 60.
    Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct. 34(3), 359–378 (1997) zbMATHCrossRefGoogle Scholar
  61. 61.
    Tang, J., Wang, K.W.: Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement. Smart Mater. Struct. 10(4), 794–806 (2001) CrossRefGoogle Scholar
  62. 62.
    Thorp, O., Ruzzene, M., Baz, A.: Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater. Struct. 10(5), 979–989 (2001) CrossRefGoogle Scholar
  63. 63.
    Thorp, O., Ruzzene, M., Baz, A.: Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Mater. Struct. 14(4), 594–604 (2005) CrossRefGoogle Scholar
  64. 64.
    Tzou, H.S.: Vibration Control of Structures: An Introduction. Kluwer Academic, Dordrecht (1997) Google Scholar
  65. 65.
    Tzou, H.S., Fu, H.Q.: A study of segmentation of distributed piezoelectric sensors and actuators. Part I: theoretical analysis. J. Sound Vib. 172(2), 247–259 (1994) zbMATHCrossRefGoogle Scholar
  66. 66.
    Tzou, H.S., Fu, H.Q.: A study of segmentation of distributed piezoelectric sensors and actuators. Part II: parametric study and active vibration controls. J. Sound Vib. 172(2), 261–275 (1994) CrossRefGoogle Scholar
  67. 67.
    Varadan, V.V., Lim, Y.H., Varadan, V.K.: Closed loop finite-element modeling of active/passive damping in structural vibration control. Smart Mater. Struct. 5(5), 685–694 (1996) CrossRefGoogle Scholar
  68. 68.
    von Flotow, A.H.: Disturbance propagation in structural networks. J. Sound Vib. 106(3), 433–450 (1986) CrossRefGoogle Scholar
  69. 69.
    Wang, S.Y.: A finite element model for the static and dynamic analysis of piezoelectric bimorph. Int. J. Solids Struct. 41(15), 4075–4096 (2004) zbMATHCrossRefGoogle Scholar
  70. 70.
    Wu, S.Y.: Method for multiple-mode shunt damping of structural vibration using a single pzt transducer. In: Proceedings of SPIE, vol. 3327, p. 159 (1998) Google Scholar
  71. 71.
    Wu, S.Y., Bicos, A.S.: Structural vibration damping experiments using improved piezoelectric shunts. In: Davis, L.P. (ed.) Smart Structures and Materials 1997: Passive Damping and Isolation. Proc. SPIE, vol. 3045, pp. 40–50 (1997) CrossRefGoogle Scholar
  72. 72.
    Yang, H.T.Y., Saigal, S., Liaw, D.G.: Advances of thin shell finite elements and some applications—version I. Comput. Struct. 35(4), 481–504 (1996) CrossRefGoogle Scholar
  73. 73.
    Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181(3), 485–501 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Collet
    • 1
  • M. Ouisse
    • 1
  • K. A. Cunefare
    • 2
  • M. Ruzzene
    • 3
  • B. Beck
    • 2
  • L. Airoldi
    • 3
  • F. Casadei
    • 3
  1. 1.FEMTO-ST Institute, Applied MechanicsUniversity of Franche-ComtéBesançonFrance
  2. 2.G.W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations