Advertisement

Fibrous Ion Exchangers

  • E. G. Kosandrovich
  • V. S. Soldatov
Chapter

Abstract

The chapter is a review covering the most important aspects of fibrous ion exchangers: syntheses, physical chemical properties, equilibria and kinetics of sorption processes, and possible and real fields of their applications. Their properties, methods of preparation, and applications are in many ways different from those of conventional ion exchange resins. Advantages and problems connected with fibrous ion exchangers are considered in the chapter. Sorption of different substances from air and applications of fibrous ion exchangers for air purification from substances of different natures (acid, base, neutral substances, water vapors) is a most important field for their practical use. Fibrous catalysts, color-changing sorbents, and hybrid fibrous sorbents impregnated with nanoparticles of inorganic substances are also described.

Keywords

Quaternary Ammonium Group Weak Base Anion Exchanger Exchanger FIBAN Superequivalent Sorption Weak Base Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Economy J, Dominguez L, Mangun C (2002) Polymeric ion exchange fibers. Ind Eng Chem Res 41:6436–6442Google Scholar
  2. 2.
    Volf LA (1980) Fibers with special properties (Volokna s osobymi svojstvami (Russ)). Khimia, MoscowGoogle Scholar
  3. 3.
    Zverev MP (1981) Chemosorption fibers (Khemosorbtsionnye volokna (Russ)). Khimia, MoscowGoogle Scholar
  4. 4.
    Soldatov V, Pawlowski L, Shunkevich A et al (2004) New materials and technologies for environmental engineering. Part I. Syntheses and structure of ion exchange fibers. Monographs of Polish Academy of Sciences, LublinGoogle Scholar
  5. 5.
    Perepelkin KE (2001) Chemical fibers with specific properties for industrial application and personnel protection. J Ind Text 31:87–102Google Scholar
  6. 6.
    Soldatov VS, Shunkevich AA, Sergeev GI (1988) Synthesis, structure and properties of new fibrous ion exchangers. React Polym Ion Exch Sorbents 7(2–3):159–172Google Scholar
  7. 7.
    Shcherbinina NI, Myasoedova GV, Savvin SB (1988) Fibrous chelating sorbents in inorganic analysis. Russ J Anal Chem (Zhurnal analiticheskoy khimii (in Russian)) 43(12):2117–2131Google Scholar
  8. 8.
    Shimamura M, Teramoto K, Yoshioka T et al (1989) Polystyrene based functional fibers. In: Lewin M, Preston J (eds) Handbook of fiber science and technology. Marcel Dekker, New YorkGoogle Scholar
  9. 9.
    Kotze MH (1992) The status of ion-exchange fibers for metallurgical applications, overview. JOM 44:46–50Google Scholar
  10. 10.
    Shimizu H (1993) Development of ion-exchange technology in Japan, part III. J Ion Exch 4(2):2–19Google Scholar
  11. 11.
    Jaskari T, Vuorio M, Kontturi K (2001) Ion exchange fibers and drugs: an equilibrium study. J Control Rel 70:219–229Google Scholar
  12. 12.
    Soldatov VS, Elinson IS, Shunkevich AA (1994) Application of fibrous ion exchangers in air purification from acidic impurities. In: Proceedings of the international symposium on hydrometallurgy’94. Chapman & Hall, London/Glasgow/Weinhem/New York/Tokyo/Melbourne/Madras, pp 837–855Google Scholar
  13. 13.
    Dominguez L, Benak KR, Economy L (2001) Design of high efficiency polymeric cation exchange fibers. Polym Adv Technol 12:197–205Google Scholar
  14. 14.
    Soldatov VS, Elinson IS, Shunkevich AA et al (1996) Air pollution control with fibrous ion exchangers. In: Pawlowski L, Lacy WJ, Uchrin C et al (eds) Proceedings of the 10th international conference. Chemistry for the protection of the environment, vol 2. Plenum, New York/London, pp 55–67Google Scholar
  15. 15.
    Jyo A, Kugara J, Trobradovic H et al (2004) Fibrous iminodiacetic acid chelating cation exchangers with a rapid adsorption rate. Ind Eng Chem Res 43:1599–1607Google Scholar
  16. 16.
    Soldatov VS, Pawlowski L, Wasag H et al (1996) Prospects of fibrous ion exchangers in water pollution control. In: Pawlowski L, Lacy WJ, Uchrin C et al (eds) Proceedings of the 10th international conference. Chemistry for the protection of the environment, vol 2. Plenum, New York/London, pp 107–121Google Scholar
  17. 17.
    Ogorodnikov VA, Soldatov VS, Shunkevich AA (2003) Hydrodynamic resistance of the filtration layers of fibrous carboxylic acid cation exchanger FIBAN K-4. Proc Natl Acad Sci Belarus: Chem Ser (Vesti NAN Belarusi: seriya khimicheskikh nauk (Russ)) 2:83–87Google Scholar
  18. 18.
    Helferich F (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Kokotov YuA, Zolotarev PP, El’kin GE (1986) Theoretical foundations of ion exchange (Teoreticheskie osnovy ionnogo obmena (in Russian)). Khimia, LeningradGoogle Scholar
  20. 20.
    Yoshioka T, Shimamure M (1983) Studies of polystyrene-based ion exchanger fibers. I. The preparation and fundamental characteristics of polystyrene-based ion exchange fiber. Bull Chem Soc Jpn 56(12):3726–3729Google Scholar
  21. 21.
    Petruzzelli D, Kalinichev A, Soldatov V et al (1995) Chloride/sulfate ion exchange kinetics on fibrous resins. Two independent models for film diffusion control. Ind Eng Chem Res 34:2618–2624Google Scholar
  22. 22.
    Petruzzelli D, Tiravanti G, Liberti L et al (1993) Chloride – sulfate exchange kinetics on fibrous resins. A complete study with spherural exchangers. In: Duer A, Hudson MJ, Williams PA (eds) Ion exchange processes: advances and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  23. 23.
    Chen L, Yang G, Zhang J (1996) A study of the exchange kinetics of ion exchange fibers. React Funct Polym 29:139–144Google Scholar
  24. 24.
    Lewin M, Preston J (eds) (1989) Handbook of fiber science and technology, vol 2, High technology fibers. CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Vatutsina OM, Soldatov VS, Sokolova VI et al (2006) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym 67(1):90–108Google Scholar
  26. 26.
    Kokotov YuA, Pasechnik VA (1970) Equilibrium and kinetics of ion exchange (Ravnovesie i kinetika ionnogo obmena (in Russian)). Khimia, LeningradGoogle Scholar
  27. 27.
    Yoshioka T (1985) Studies of polystyrene-based ion exchanger fiber. III. A novel fiber-form chelating exchanger and its adsorption properties for heavy-metal ions. Bull Chem Soc Jpn 58(9):2618–2625Google Scholar
  28. 28.
    Hautari HH, Mironova TV, Sosinovich ZI et al (2002) Selectivity of sodium-calcium exchange on a fibrous sulfonic ion exchanger. Proc Natl Acad Sci Belarus: Chem Ser (Vesti NAN Belarusi: seriya khimicheskikh nauk (in Russian)) 4:46–49Google Scholar
  29. 29.
    Soldatov VS, Sokolova VI, Medyak GV et al (2007) Binary ion exchange equlibria in systems containing NO3, Cl and SO42− on fibrous anion exchangers with tetraalkylammonium groups. React Funct Polym 67:1530–1539Google Scholar
  30. 30.
    Soldatov VS, Shunkevich AA, Elinson IS et al (1999) Chemically active textile materials as efficient means for water purification. Desalination 124:181–192Google Scholar
  31. 31.
    Soldatov V, Shunkevich A, Wasag H et al (2002) Prospects of fibrous ion exchanger in technology of water purification. In: Pawlowski L, Dudzinska MR, Pawlowski A (eds) Environal engineering studies. Kluwer/Plenum, New York/Boston/Dordrecht/London/Moscow, pp 153–165Google Scholar
  32. 32.
    Soldatov V (1991) Fibrous ion exchangers: new materials for hydrometallurgy. In: Abe M, Kataoka T, Suzuki T (eds) Proceedings of the international conference on ion exchange. New developments in ion exchange: materials, fundamentals and applications (ICIE ‘91), Tokyo, 2–4 Oct 1991. Amsterdam, Oxford/New York/Tokyo, pp 511–516Google Scholar
  33. 33.
    Zagorodni AA (2007) Ion exchange materials: properties and applications. Elsevier, St. LouisGoogle Scholar
  34. 34.
    Barash AN, Kalyanova NF, Litovchenko GD et al (1977) The effect of heating on the properties of anion exchange fiber VION AN. Fibre Chem (Khimicheskie volokna (in Russian)) 6:44–45Google Scholar
  35. 35.
    Zakharova NN, Zashchepkina ES, Volkov LA et al (1990) Synthesis of copolymer of acrylonitrile and sodium metallyl sulfonate in dimethylsulfoxide and preparation chemosorption fibers on its base. Fibre Chem (Khimicheskie volokna (in Russian)) 4:16–19Google Scholar
  36. 36.
    Zverev MP (1989) Chemosorption fibers VION: materials for protection of the environment from harmful substances. Fibre Chem (Khimicheskie volokna (in Russian)) 3:32–37Google Scholar
  37. 37.
    Khamrakulov G, Kamilova M, Ismailov I et al (1992) On the properties of fiber-forming copolymers of acrylonitrile with quaternary ammonium salt of N, N-dimethylaminoethylmethacrylate. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 65(5):1193–1196Google Scholar
  38. 38.
    Pulatova FA, Valieva GA, Ergasheva VA (1992) New fiber-forming copolymers of acrylonitrile. In: Proceedings of the conference, Chemical technologies of textile materials, Tashkent, pp 33–37Google Scholar
  39. 39.
    US Patent 5009951 (1991)Google Scholar
  40. 40.
    US Patent 4988364 (1991)Google Scholar
  41. 41.
    Shoushtari AM, Zargaran M, Abdouss M (2006) Preparation and characterization of high efficiency ion-exchange crosslinked acrylic fibers. J Appl Polym Sci 101:2202–2209Google Scholar
  42. 42.
    Myasoedova GV, Nikashina VA, Molochnikova NP et al (2000) Properties of new types of fibrous sorbents with amidoxime and hydrazidine groups. J Anal Chem (Zhurnal analiticheskoy khimii (in Russian)) 55(6):611–615Google Scholar
  43. 43.
    Zverev MP, Barash AN, Kalyanova NF et al (1978) Synthesis of fiber-forming carbo-chain chemosorption copolymers and studies of reaction of formation of three-dimensional polymer net. In: Proceedings of the international symposium, Tashkent, USSR 17–21 Oct 1978. Macromolecular chemistry. USSR, Nauka, Moscow, pp 113–116Google Scholar
  44. 44.
    Pakshver EA (1973) Carbochain synthetic fibers. Khimia, MoscowGoogle Scholar
  45. 45.
    Kuleznev VN (1980) Polymer mixtures: structure and properties. Khimia, MoscowGoogle Scholar
  46. 46.
    FR Patent 2237953 (1974)Google Scholar
  47. 47.
    German Patent DE 2323656 (1973)Google Scholar
  48. 48.
    US Patent 2980635 (1961)Google Scholar
  49. 49.
    Kobuke Y, Tabushi I, Aoki T et al (1988) Composite fiber adsorbent for rapid uptake of uranyl from sea water. Ind Eng Chem Res 27:1461–1466Google Scholar
  50. 50.
    Mezhirov MS, Chegolya AS, Idiatulov RK et al (1981) New fibrous materials with adsorption properties. In: Proceedings of third international conference. Chemical fibers, vol 5. Kalinin, USSR, pp 13–18Google Scholar
  51. 51.
    FR Patent 2197938 (1973)Google Scholar
  52. 52.
    Mazovetskaya VP, Danilova EYa, Volf LA (1976) Investigation of bicomponent mixtures of some fiber-forming polymers with polyethyleneimines. In: Methods of syntheses and applications of polyethyleneimine in practice. Nauka, Moscow, pp 231–239Google Scholar
  53. 53.
    Emets LV, Danilova EYa, Ivanova GV et al (1981) Modification of carbochain fibers by polyethyleneimine aiming preparation of the ion exchangers. In: Proceedings of third international conference. Chemical fibers, vol 5. Kalinin, USSR pp 288–294Google Scholar
  54. 54.
    Ratushnyak IB, Vasiljeva OO, Danilova EYA (1978) The compositions for preparation of ion exchange fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 2:17–19Google Scholar
  55. 55.
    Zverev MP (1975) Research of VNIIV in the field of preparation of ion exchange fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 5:3–6Google Scholar
  56. 56.
    Barash AN, Zverev MP, Kalyanova NF (1981) Preparation of the chemosorption fiber from poly-2-vinylpyridine and vinylidene fluoride. Fibre Chem (Khimicheskie volokna (in Russian)) 4:20–21Google Scholar
  57. 57.
    US Patent 30386797 (1968)Google Scholar
  58. 58.
    UK Patent 968328 (1964)Google Scholar
  59. 59.
    Japanese Patent 55110125 (1980)Google Scholar
  60. 60.
    Japanese Patent 1272863 (1989)Google Scholar
  61. 61.
    Author’s certificate USSR 1616930 (1990)Google Scholar
  62. 62.
    Artemenko SE, Kardash MM, Svekol’nikova OYu (1992) The effect of fiber additives on the structure formation of cation exchange membranes. Fibre Chem (Khimicheskie volokna (in Russian)) 5:29–32Google Scholar
  63. 63.
    Ratushnyak IB, Danilova EYa, Emets LV et al (1978) Ion exchange polyacrylonitrile fibers containing polyethyleneimine. Fibre Chem (Khimicheskie volokna (in Russian)) 6:33–35Google Scholar
  64. 64.
    Kazakevich YuT, Danilova EYa, Emets LV et al (1992) Synthesis and studies of fibrous anion exchangers on the base of polyamines. Fibre Chem (Khimicheskie volokna (in Russian)) 5:12–14Google Scholar
  65. 65.
    Shimizu H (ed) (1993) Handbook of adsorption techniques (Kunchaku Gijutsu Hando Bukku). NTS, TokyoGoogle Scholar
  66. 66.
    Yoshioka T, Shimamura M (1986) Studies of polystyrene-based ion exchange fiber. IV. A novel fiber-form material for adsorption and immobilization of biologically-active proteins. Bull Chem Soc Jpn 59(3):399–403Google Scholar
  67. 67.
    Mark HF, Norman GG, Norbert MB (1965) Encyclopedia of polymer science and technology: plastics, resins, rubbers, fibers. Interscience, New York - LondonGoogle Scholar
  68. 68.
    Ponomarev AN (1980) Functionalization of polymer supports for polymerization catalysts by graft polymerization methods. J Appl Polym Sci 25(2):349–357Google Scholar
  69. 69.
    Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New YorkGoogle Scholar
  70. 70.
    Tsetlin BL, Vlasov AV, Babkin IYu (1973) Radiation graft polymerization. In: Kargin VD (ed) Radiation chemistry of polymers. Nauka, MoscowGoogle Scholar
  71. 71.
    Kabanov VJa, Sidorova LP, Spitsin VI (1973) Kinetics and mechanism of radiation ionic graft polymerization. Proc Acad Sci USSR (Doklady akademii nauk SSSR (in Russian)) 211(4):889–892Google Scholar
  72. 72.
    Huglin MB (1976) Radiation-induced graft copolymerization. Proc R Austral Chem Inst 43(2):43–50Google Scholar
  73. 73.
    Kabanov VJa, Sidorova LP, Spitsin VI (1974) Radiation-induced graft polymerization by ionic mechanism. Eur Polym J 10(12):1153–1158Google Scholar
  74. 74.
    Lawler JP, Charlesby A (1980) Grafting of acrylic acid onto polyethylene using radiation as initiator. Radiat Phys Chem 15(5):595–602Google Scholar
  75. 75.
    Kabanov VJa, Aliyev RE, Chasovnikov IA (1982) Radiation graft polymerization of styrene and acrylonitrile at a high dose rate. High Mol Compd ser B (Vysokomoleculyarnye soedineniya ser B (in Russian)) 24(2):134–136Google Scholar
  76. 76.
    Kapustina IB, Kurilenko AI, Khoroshko RP (1972) Preparation of combined ion exchange fibers by liquid-phase copolymerization of styrene and divinylbenzene on polypropylene fibers. Proc Acad Sci Belarusian SSR Phys-Energy Ser (Vesti academii nauk Belaruskay SSR seriya fiziko-energeticheskikh nauk (in Russian)) 2:29–32Google Scholar
  77. 77.
    Soldatov VS, Elinson IS, Shunkevich AA (1986) Purification of air from acid gases (SO2) by non-woven strong-base filtering materials. In: Pawlowski L, Alaerts G, Lacy W (eds) Proceedings of the fifth international conference. Chemistry for protection of the environment, Leuven 9–13 Sept 1985. Elsevier, Amsterdam/Oxford/New York/Tokyo, pp 369–386Google Scholar
  78. 78.
    Hideaki S (2000) FAPIG: First Atom Power Ind Group 155:20–26Google Scholar
  79. 79.
    http://ifoch.bas-net.by. Accessed 01 Aug 2010
  80. 80.
    Malakhova LI, Vlasov AV, Mikhailov NV et al (1972) Kinetics of radiation graft polymerization of acrylic acid from the gas phase on polypropylene fibers. High Mol Compd Ser A (Vysokomoleculyarnye soedineniya ser A (in Russian)) 14(4):751–755Google Scholar
  81. 81.
    Junjuj U, Rogovin ZA, Konkin AA (1962) Grafting of polyacrylonitrile and polyvinylacetate to polypropylene fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 6:11–14Google Scholar
  82. 82.
    Kostrov YuA, Konkin AA, Kostrova KA et al (1966) Electron microscopic studies of the fibers made of the graft copolymer of polyethylene and polyacrylic acid. Fibre Chem (Khimicheskie volokna (in Russian)) 5:15–19Google Scholar
  83. 83.
    Druzhinina TV, Andrichenko YuA, Konkin AA et al (1962) Studies of the process of formation of the polyethylene fiber. Fibre Chem (Khimicheskie volokna (in Russian)) 2:17–20Google Scholar
  84. 84.
    Druzhinina TV, Konkin AA, Stasyuk HA et al (1967) Synthesis of graft copolymers of polyethylene amine with polyacrylic acid. Fibre Chem (Khimicheskie volokna (in Russian)) 3:16–19Google Scholar
  85. 85.
    Chapiro A (1958) Synthesis of grafted copolymers having undergone ionizing radiation. J Polym Sci 29:321–342Google Scholar
  86. 86.
    Chapiro A (ed) (1962) Radiation chemistry of polymeric systems. Interscience, New YorkGoogle Scholar
  87. 87.
    Rao MH, Rao KN (1980) Radiation initiated grafting. In: Proceedings of the symposium. Industrial polymers and radiation, vol 1. Vallabh Vidyanagar, Gujarat, 12–14 Feb 1979 pp 275–286Google Scholar
  88. 88.
    Gupta BD, Shapiro A (1989) Preparation of ion exchange membranes by grafting acrylic acid into pre-irradiated polymer films. Eur Polym J 25(11):1145–1148Google Scholar
  89. 89.
    Muchin BA, Andrichenko YuD, Druzhinina TV et al (1976) Synteze von pfropf copolymeren des polycaproamids durch radikalishe polymerisation. Fazers Textil 27(6):277–285Google Scholar
  90. 90.
    Kislyuk MS, Gabrieljan GA, Andrichenko YuD et al (1982) Synthesis of the graft copolymers of polyacrylamide and polydimethylaminoethylmethacrylate using reversible reductive-oxidative systems. High Mol Compd Ser A (Vysokomoleculyarnye soedineniya ser A (in Russian)) 24(11):2321–2325Google Scholar
  91. 91.
    Kislyuk MS, Gabrieljan GA, Galbraich LS et al (1983) Studies kinetics and mechanism of reactions of graft polymerization of dimethylaminoethylmethacrylate. High Mol Compd Ser A (Vysokomoleculyarnye soedineniya ser A (in Russian)) 25(5):1095–1101Google Scholar
  92. 92.
    Zheltobryukhov VF, Efros AV, Andrichenko YuD et al (1978) Properties of polycaproamide fibers modified by quaternary ammonium salts of dimethylaminoethylmethacrylate. Fibre Chem (Khimicheskie volokna (in Russian)) 6:47–48Google Scholar
  93. 93.
    Author’s certificate USSR 1650215 (1991)Google Scholar
  94. 94.
    Druzhinina TV, Chelysheva LV, Galbraich LS (1987) Optimizing of the preparation method for graft copolymers of polycaproamide and polydiethylaminoethylemethacrylate. Fibre Chem (Khimicheskie volokna (in Russian)) 2:20–22Google Scholar
  95. 95.
    Mosina NYu, Druzhinina TV, Galbraich LS (1992) Features of hetero-phase emulsion graft polymerization of glycidylmethacrylate to polycaproamide fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 5:14–16Google Scholar
  96. 96.
    Alexandrijskij AS, Tsukanova NP, Druzhinina TV et al (1991) Preparation of fibrous anion exchangers on the base of graft copolymer of polycaproamidoglycidylmethacrylate and polyethylenepolyamine. Fibre Chem (Khimicheskie volokna (in Russian)) 5:34–35Google Scholar
  97. 97.
    Alexandrijskij AS, Druzhinina TV, Gembitskij LA et al (1991) Preparation of fibrous anion exchangers containing guanidine groups. Fibre Chem (Khimicheskie volokna (in Russian)) 1:29–31Google Scholar
  98. 98.
    Andrichenko YuD, Druzhinina TV (1992) Initiation of the graft polymerization of potassium parastyrenesulfonate at the expense of oxidation of polycaproamide by hydrogen peroxide. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 65(11):2633–2637Google Scholar
  99. 99.
    Andrichenko YuD, Druzhinina TV (1993) Preparation of cation exchange polyacrylamide fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 2:12–14Google Scholar
  100. 100.
    Hardin AP, Zheltobryukhov VF, Gulbina TI et al (1983) Synthesis of graft copolymers of polyacryloamide by polymerization of vinyl monomers, initiated by the occluded macro-radicals. High Mol Compd Ser B (Vysokomoleculyarnye soedineniya ser B (in Russian)) 25(8):554–557Google Scholar
  101. 101.
    Zheltobryukhov VF, Tatarnikov MK (1984) Foundations of technology of production of fibers from the graft copolymers of polyamide I. Izvestiya vysshikh uchebnykh zavedeniy Ser technologii legkoy promyshlennosti 27(6):35–38Google Scholar
  102. 102.
    Zheltobryukhov VF, Tatarnikov MK (1985) Foundations of technology of production of fibers from the graft copolymers of polyamide II. Izvestiya vysshikh uchebnykh zavedeniy Ser technologii legkoy promyshlennosti (in Russian) 28(1):45–47Google Scholar
  103. 103.
    Tatarnikov MK, Mcrtychev KN, Zheltobryukhov VF et al (1986) Experimental industrial realization of the process for preparation of chemosorption polyamide fiber. Fibre Chem (Khimicheskie volokna (in Russian)) 6:35–36Google Scholar
  104. 104.
    Valdman DI, Zheltobryukhov VF, Mcrtychev KN et al (1985) Determination of the amount of graft copolymer at preparation of modified fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 1:59–60Google Scholar
  105. 105.
    Tatarnikov MK, Zvezdin VI, Zheltobryukhov VF et al (1988) The computer control of production of fibers from graft copolymers of polycaproamide. Fibre Chem (Khimicheskie volokna (in Russian)) 2:56–57Google Scholar
  106. 106.
    Hardin AP, Zheltobryukhov VF, Tatarnikov MK (1984) Low temperature synthesis of graft copolymers of polycaproamide with polydimethylaminoethylmethacrylate. Fibre Chem (Khimicheskie volokna (in Russian)) 3:33–34Google Scholar
  107. 107.
    Kuzmin VS, Morozenko TF, Zheltobryukhov VF (1991) Development of a method for preparation of fibrous sorbent KM-K1 for purification of air from basic gases and vapors. In: Proceedings of all-union conference. Concept of ecologically pure regions, Volgograd, USSR, pp 18–22Google Scholar
  108. 108.
    Perevalova EA, Korsunskij SN, Morozenko TF et al (1991) Development of a method for preparation of fibrous sorbent KM-A1 for purification of air from acid gases and vapors. In: Proceedings of all-union conference. Concept of ecologically pure regions, Volgograd, USSR, pp 22–27Google Scholar
  109. 109.
    Godenko AE, Korsunskij SN, Perevalova EA et al (1991) Mathematical modeling of the process of preparation of graft copolymers of polyacryloamide and polydimethylaminoethylmethacrylate. Referative Chem J (Referativnyi zhurnal khimia (in Russian)), 24C576Google Scholar
  110. 110.
    Battaerd J, Tregear DW (1967) Graft copolymers. Wiley, New YorkGoogle Scholar
  111. 111.
    Korshak VV, Mozgova KK, Shkolina MA et al (1963) Preparation of graft copolymers. High Mol Compd (Vysokomoleculyarnye soedineniya (in Russian)) 5(3):338–341Google Scholar
  112. 112.
    Buchenska J, Skwarski T (1991) Grafting of vinyl monomers into caproamide-6 fibers. Polim Tworz Wielkoc Zastcezk 36(1):23–27Google Scholar
  113. 113.
    Yurkevich VV, Konkin AA (1972) Investigation of physical mechanical properties of grafted polyacrylamide fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 4:49–50Google Scholar
  114. 114.
    Author’s Certificate USSR 840053 (1981)Google Scholar
  115. 115.
    Shalabi SE, Gabrielijan GA, Rogovin ZA (1982) Synthesis of the “sandwich” polymers on the base of polycaproamide. High Mol Compd Ser B (Vysokomoleculyarnye soedineniya ser B (in Russian)) 24(3):222–225Google Scholar
  116. 116.
    Shalabi SE, Afanasijeva IS, Gabrielijan GA et al (1984) Properties of polycaproamide fibers modified by grafting of polyacrylonitrile. Fibre Chem (Khimicheskie volokna (in Russian)) 3:32–33Google Scholar
  117. 117.
    Author’s Certificate USSR 1599454 (1990)Google Scholar
  118. 118.
    Sonnerskog S (1958) On the reaction between polyacrylonitrile and hydrazine. Acta Chem Scandinavica 12:1241–1246Google Scholar
  119. 119.
    Kudryavtsev GI, Zharkova MA (1956) Saponification of the polyacrylonitrile fiber: acid hydrolysis of copolymers on the base of polyacrylonitrile. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 7:1103–1108Google Scholar
  120. 120.
    Kudryavtsev GI, Matiash TA, Zharkova MA et al (1961) Hydrazination of polyacrylonitrile fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 4:13–19Google Scholar
  121. 121.
    Romanova TA, Zharkova MA, Kudryavtsev GI et al (1968) Modification of polyacrylonitrile fibers by hydrazine hydrate. Fibre Chem (Khimicheskie volokna (in Russian)) 5:23–25Google Scholar
  122. 122.
    Kulinsky DA, Emets LV, Kostetsky VV (1976) Modification of polyacrylonitrile and the fibers on its base by hydroxylamine. Fibre Chem (Khimicheskie volokna (in Russian)) 6:21–22Google Scholar
  123. 123.
    Kato T, Kago T, Kusakake K et al (1990) Preparation of amidoxime fibers for recovery of uranium from sea water. J Chem Eng Jpn 23(6):744–750Google Scholar
  124. 124.
    Omichi H, Katakai A, Sugo T et al (1986) A new type of amidoxime group containing adsorbent for the recovery of uranium from sea water: effect of grafting of hydrophilic monomers. Sep Sci Technol 21(3):299–313Google Scholar
  125. 125.
    Akulich ZI, Sokolova VI, Medyak GV et al (2001) New fibrous polyacrylonitrile ion exchangers FIBAN with strong base functional groups. In: Proceedings of II Belarus science conference. Scientific and technical problems in production of chemical fibers in Belarus, Mogilev, pp 267–271Google Scholar
  126. 126.
    Volf LA, Kirilenko YuK, Urban ZA et al (1969) Thermostabilization of the polyvinylalcohol fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 3:15–17Google Scholar
  127. 127.
    Sugasaka K, Katoh S, Takai N et al (1981) Recovery of uranium from sea water. Sep Sci Tech 16(9):271–313Google Scholar
  128. 128.
    Author’s certificate USSR 183375 (1966)Google Scholar
  129. 129.
    Volf LA, Meos AI, Inkina SA (1962) Sulfonation of the polyvinylalcohol fibers. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 35:2047–2050Google Scholar
  130. 130.
    Author’s certificate USSR 191043 (1969)Google Scholar
  131. 131.
    Bekshieva EV, Besprozvannyh AV, Volf LA et al (1970) On sulfonation of dehydrochlorinated polyvinylchloride fibers. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 43(10):2367–2368Google Scholar
  132. 132.
    Sergeeva LN, Rogovin ZA (1964) Carbon chain fibers: modified polyvinylalcohol fibers with ion exchange properties. Fibre Chem (Khimicheskie volokna (in Russian)) 2:27–30Google Scholar
  133. 133.
    Tsetlina LA, Meos AI, Volf LA (1961) Preparation of fire-resistant polyvinylalcohol fibers and cloths. Fibre Chem (Khimicheskie volokna (in Russian)) 6:22–24Google Scholar
  134. 134.
    Tsetlina LA, Volf LA, Meos AI (1963) Composition and structure of phosphoric acid ethers of polyvinylalcohol fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 5:23–25Google Scholar
  135. 135.
    Tsetlina LA, Yanovskaya NV, Volf LA (1965) Phosphorilation of polyvinylalcohol fibers vinol in the presence of ternary bases. Fibre Chem (Khimicheskie volokna (in Russian)) 4:16–19Google Scholar
  136. 136.
    US Patent 3275575 (1966)Google Scholar
  137. 137.
    Messalem R, Forgacs C, Michael J et al (1977) Ion exchange fibers: preparation and application. J Appl Polym Sci 31:383–388Google Scholar
  138. 138.
    Egawa H (1965) Preparation of carboxylic acid type cation exchange fibers. J Chem Soc Jpn 68(7):1304–1306Google Scholar
  139. 139.
    Henmi M, Yoshioka T (1993) Studies of ion exchange fiber “IONEX” for precoating material. Desalination 91(3):319–332Google Scholar
  140. 140.
    Fujiwara K (2007) Preparation of functional fibers by radiation induced graft polymerization and application. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 265(1):150–155Google Scholar
  141. 141.
    Medyak GV, Shunkevich AA, Soldatov VS (1989) Physical chemical properties of fibrous ion exchangers FIBAN on the base of polypropylene. Proc Natl Acad Sci Repub Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 1:69–74Google Scholar
  142. 142.
    Japanese Patent 8012774 (1996)Google Scholar
  143. 143.
    Japanese Patent 62164734 (1987)Google Scholar
  144. 144.
    Japanese Patent 62237924 (1987)Google Scholar
  145. 145.
    Mironova TV (2005) Methods of fast potentiometric titration and their applications to characterization of ion exchangers. Diss, MinskGoogle Scholar
  146. 146.
    Medyak GV, Shunkevich AA, Soldatov VS (1989) Chemical and mechanical stability of FIBAN polypropylene-based fibrous ion exchangers. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 2:74–78Google Scholar
  147. 147.
    Soldatov VS, Pokrovskaya AI, Martsinkevich RV (1984) Polypropylene-based fibrous anion exchangers. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 57(6):1410–1413Google Scholar
  148. 148.
    Soldatov VS, Pokrovskaya AI, Martsinkevich RV (1984) Fibrous polypropylene-based sulfonic cation exchangers. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 57(9):2030–2034Google Scholar
  149. 149.
    Soldatov VS, Tsygankova AV, Elinson IS et al (1987) Osmotic stability and freeze resistance of strongly basic fibrous anion exchange resins based on polypropylene. Proc Acad Sci Belorussian SSR Chem Ser (Vesti Academii nauk Belorusskoy SSR seriya khimicheskikh nauk (in Russian)) 2:78–84Google Scholar
  150. 150.
    Soldatov VS, Tsygankova AV, Elinson IS et al (1988) Chemical, osmotic and freeze resistance of FIBAN A-1 strongly basic fibrous anion exchangers. Russ J Appl (Zhurnal prikladnoy khimii (in Russian)) 61(11):2465–2472Google Scholar
  151. 151.
    Soldatov VS (2008) Syntheses and the main properties of FIBAN fibrous ion exchangers. Solv Extract Ion Exch 26(5):457–513Google Scholar
  152. 152.
    Yegiazarov YuG, Soldatov VS (2001) Catalytic systems on the base of fibrous ion exchangers. Sorpt Chromatogr Proc (Sorbtsionnie i khromatograficheskie protsessy (in Russian)) 1(4):591–600Google Scholar
  153. 153.
    Soldatov VS (1984) New fibrous ion exchangers for purification of liquids and gases. In: Pawlowski L, Verdier AJ, Lacy WJ (eds) Proceedings of international conference chemistry for protection environment, Tolouse, 19–25 Sept 1983. Studies in environmental science, vol 3. Elsevier, Amsterdam, pp 353–364Google Scholar
  154. 154.
    Soldatov VS, Martzinkevich RV, Shunkevich AA et al (1998) Selectivity of cesium sorption by sulfonic ion exchangers present in aqueous solutions in trace quantities. Russ J Phys Chem (Zhurnal fizicheskoy khimii (in Russian)) 72(9):1686–1689Google Scholar
  155. 155.
    Soldatov VS, Popova OP, Shunkevich AA (1994) Kinetics of exchange of chloride with organic anions on fibrous strong base ion exchange FIBAN A-1. Russ J Phys Chem (Zhurnal fizicheskoy khimii (in Russian)) 68(4):763–765Google Scholar
  156. 156.
    Medyak GV, Shunkevich AA, Polikarpov AP et al (2001) Preperation and properties of fibrous ion exchanger FIBAN K-4. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 74(10):1608–1613Google Scholar
  157. 157.
    John E, Greenleaf AK, Sengupta N (2006) Environmentally benign hardness removal using ion exchange fibers and snowmelt. Environ Sci Technol 40:370–376Google Scholar
  158. 158.
    Prigozhaeva LM, Polikarpov AP, Shunkevich AA et al (2005) Influence of addition of bifunctional co-monomers on the grafting of acrylic acid into polypropylene fibers. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 3:46–49Google Scholar
  159. 159.
    Prigozhaeva LM, Polikarpov AP, Shunkevich AA (2009) Influence of addition of bifunctional co-monomers on the chemical stability and of oxydability of the aqueous extracts from the fibrous ion exchanger FIBAN K-4. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 2:87–90Google Scholar
  160. 160.
    Russ Patent 1051989 (1995)Google Scholar
  161. 161.
    Khobotova EB, Zarechensky VM (1997) Regeneration of ammonium copper-bearing washing solutions. Calvanothech Surf Treat (Galvanotechnica y obrabotka poverkhnosty (in Russian)) 5(3):43–49Google Scholar
  162. 162.
    Russ Patent 2044748 (1995)Google Scholar
  163. 163.
    Barash AN, Kostina TF, Egorov KK et al (1988) Alkaline hydrolysis of nitrile groups in the hydrazinated Nitron fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 3:7–8Google Scholar
  164. 164.
    Myasoedova GV, Nikashina VA, Molochnikova NP et al (2000) Properties of new types of fibrous sorbents with amidoxyme and hydrazine groups. Russ J Anal Chem (Zhurnal analiticheskoy khimii (in Russian)) 55(6):611–615Google Scholar
  165. 165.
    Barash AN, Zverev MP, Litovchenko GD et al (1984) The influence of nature of the second component on the process of hydrazination of polyacrylonitrile copolymers. High Mol Comp (Vysokomolekulyarnye soedineniya (in Russian)) 26(9):687–691Google Scholar
  166. 166.
    Romanova TA, Zharkova MA, Kudryavtsev GI et al (1968) Modification of polyacrylonittryle fiber by hydrazine. Fibre Chem (Khimicheskie volokna (in Russian)) 5:23–24Google Scholar
  167. 167.
    Dorokhina IS, Zharkova MA (1974) Investigation of hydrolysis of Nitron fiber structurized by hydrazine. Fibre Chem (Khimicheskie volokna (in Russian)) 3:50–51Google Scholar
  168. 168.
    Kudryavtsev GI, Matyash TA, Zharkova MA et al (1961) Hydrazination of polyacrylonitrile fibers. Fibre Chem (Khimicheskie volokna (in Russian)) 4:13–19Google Scholar
  169. 169.
    Russ Patent 2262557 (2004)Google Scholar
  170. 170.
    Elinson IS, Martinovich VI, Titova LI (2004) Physical chemical properties of of a fibrous ion exchanger on the base of hydrazinated Nitron. Sorp Chromatogr Processes (Sorbtsionnie i khromatograficheskie protsessy (in Russian)) 4:482–489Google Scholar
  171. 171.
    Martinovich VI, Elinson IS, Kashinsky AV et al (2004) Light dust-gas respirators with ion exchange fibers. Labor Soc Protect 10:59–61Google Scholar
  172. 172.
    Nizovtseva OP, Shunkevich AA (1978) Ammonia sorption by fibrous cation exchangers in H+-form. Proc Acad Sci Belorussian SSR Chem Ser (Vesti Academii nauk Belorusskoy SSR seriya khimicheskikh nauk (in Russian)) 5:62–65Google Scholar
  173. 173.
    Trochimczuk A, Kolarz BN, Wojaczynska M (1988) Acrylic anion exchangers and their sorption properties toward copper (II) and cobalt (II). React Polym Ion Exch Sorbents 7(2/3):197–202Google Scholar
  174. 174.
    Kolarz BN, Jezierska J, Bartkowiak D et al (1994) Acrylic resins with complexes of guanidyl groups and copper (II). React Polym Ion Exch Sorbents 23(2/3):53–61Google Scholar
  175. 175.
    Romanian Patent 70119 (1980)Google Scholar
  176. 176.
    Dragan S, Barboiu V, Petrariu I et al (1981) Cationic polyelectrolytes. III. Nitrile group reaction of macromolecular compounds with n, n-dialkylaminoalkylamines. J Polym Sci Polym Chem Ed 19:2869–2894Google Scholar
  177. 177.
    Kasperchik VP, Sergeev GI, Soldatov VS (1988) Kinetics of alkali hydrolysis of poly(2-vinyl-2-imidazoline). Proc Acad Sci Belorussian SSR (Doklady Academii Nauk Belorusskoy SSR (in Russian)) 32(7):621–623Google Scholar
  178. 178.
    Soldatov VS, Martsinkevich RV, Sergeev GI et al (1988) Effect of alkaline treatment on physicochemical properties of a FIBAN AK-22 fibrous ion exchanger. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 61(10):2271–2275Google Scholar
  179. 179.
    Soldatov VS, Martsinkevich RV, Pokrovskaya AI et al (1994) Hydrolytic stability, swelling and potentiometric titration of FIBAN AK-22-1 amino carboxylic ion exchanger. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 67(10):1644–1647Google Scholar
  180. 180.
    Soldatov VS, Martsinkevich RV, Sergeev GI et al (1989) Physical chemical properties of FIBAN-type new fibrous ion exchanger. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 62(7):1676–1679Google Scholar
  181. 181.
    Soldatov VS, Sergeev GV (1990) Fibrous ion exchangers: perspective sorbents for extraction of the heavy metals ions from aqueous solutions. Zhurnal vsesoyuznogo khimicheskogo obschestva Mendeleeva (in Russian) 35(1):101–106Google Scholar
  182. 182.
    Grachek VI, Shunkevich AA, Martsinkevich RV et al (2005) Chelating sorbents for water purification. Ecol Ind Russ (Ecologiya i promyshlennost Rossii (in Russian)) 1:25–27Google Scholar
  183. 183.
    Grachek VI, Lysenko GN, Akulich ZI et al (2005) Study of the structure of chelate fibrous ion exchangers by IR spectroscopy. Russ J Gen Chem (Zhurnal obschey khimii (in Russian)) 79(3):350–355Google Scholar
  184. 184.
    Shunkevich AA, Martsinkevich RV, Medyak GV et al (2004) Comparative evaluation of fibrous carboxylic acid cation exchangers as the means for the water purification from the heavy metal ions. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 77(2):253–258Google Scholar
  185. 185.
    Orlovskaya LA, Soldatov VS, Shunkevich AA (2004) Analytical characteristics of sorbent FIBAN X-1 and its application for sorption concentrating of transition metal ions in the tap water. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 4:100–104Google Scholar
  186. 186.
    Orlovskaya LA (2003) Methods for concentration of the heavy metal ions in analysis of the natural waters. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 2:42–44Google Scholar
  187. 187.
    Orlovskaya LA (2008) Evaluation of reliability of the method for preliminary sorption concentration of the heavy metal ions on FIBAN X-1 sorbent. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 1:32–37Google Scholar
  188. 188.
    Orlovskaya LA, Kremko LM, Shunkevich AA et al (2002) The sorption concentration of the heavy metal ions in distilled water by FIBAN X-1 sorbent. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 4:22–26Google Scholar
  189. 189.
    MDC.MINSK (MBИ.MH) 2256-2005Google Scholar
  190. 190.
    Republic of Belarus Patent 9746 (2005)Google Scholar
  191. 191.
    Vatutsina OM (2005) The sorption of arsenic anions in dependence of the solution pH. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 5:19–22Google Scholar
  192. 192.
    Vatutsina OM, Sokolova VI, Sokol VP et al (2006) A new composition sorbent for purification of drinking water from arsenic. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 1:58–61Google Scholar
  193. 193.
    Vatutsina OM, Sokol VP, Soldatov VS (2006) The pH effect on the arsenic anions sorption by a fibrous iron containing sorbent. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 3:83–86Google Scholar
  194. 194.
    Vatutsina OM (2006) Preperation of the iron containing fibrous composition sorbent. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 5:19–22Google Scholar
  195. 195.
    Egorova OM, Zelenkovsky VM, Soldatov VS (2007) The structure of sorption complexes of Fe (III) in a weak base anion exchanger with amido amine groups. Proc Natl Acad Sci Belarus (Doklady Natsionalnoy Akademii Nauk Belarusi (in Russian)) 51(1):83–88Google Scholar
  196. 196.
    Soldatov VS, Kosandrovich EG (2004) Sorption of sulfur dioxide by fibrous anion exchange materials. Proc Natl Acad Sci Belarus (Doklady Natsionalnoy Akademii Nauk Belarusi (in Russian)) 48(5):62–64Google Scholar
  197. 197.
    Amvrosieva TV, Diakonova OV, Poklonskaya NV et al (2000) Fibrous ion anion exchangers and poly ampholytes FIBAN as perspective sorbents for the removal of viral agents from water. In: Proceedings of 4th international congress. Water: ecology and technology, Moscow, 30 May–2 June 2000, p 816Google Scholar
  198. 198.
    Shunkevich AA, Akulich ZI, Medyak GV et al (2005) Acid-base properties of ion exchangers. III. Anion exchangers on the basis of polyacrylonitrile fiber. React Funct Polym 63:27–34Google Scholar
  199. 199.
    Soldatov VS (1998) Potentiometric titration of ion exchangers. React Funct Polym 38(2–3):73–112Google Scholar
  200. 200.
    Soldatov VS (1995) Quantitative presentation of potentiometric titration curves of ion exchangers. Ind Eng Chem Res 34:2605–2611Google Scholar
  201. 201.
    Soldatov VS (2000) Potentiometric titration of polyfunctional ion exchangers. In: Greig JA (ed) Ion Exchange at the Millennium. Imperial College, London, pp 193–200Google Scholar
  202. 202.
    Soldatov VS, Sosinovich ZI, Korshunova TA et al (2004) Acid-base properties of ion exchangers. I. Optimizing of potentiometric titration of ion exchangers exemplified by carboxylic acid resins. React Funct Polym 58:3–12Google Scholar
  203. 203.
    Soldatov VS, Sosinovich ZI, Mironova TV (2004) Acid-base properties of ion exchangers. II. Determination of the acidity parameters of ion exchangers with arbitrary functionality. React Funct Polym 58:13–26Google Scholar
  204. 204.
    IEC report on the Cincinnati ACS meeting (1955) Ind Eng Chem 47(5):7A–16AGoogle Scholar
  205. 205.
    Ashirov A (1983) Ion exchange purification of waste waters, solutions and gases (Ionoobmennaya ochistka stochnykh vod, rastvorov i gazov (in Russian)). Khimia, LeningradGoogle Scholar
  206. 206.
    Soldatov VS, Tsigankov VI, Elinson IS et al (1990) Sorption of water vapor by salt forms of fibrous anion exchanger FIBAN A-1. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 63(10):2285–2291Google Scholar
  207. 207.
    Glueckauf E, Kitt GP (1955) A theoretical treatment of cation exchangers. III. The hydration of cations in polystyrene sulphonates. Proc Roy Soc 228:322Google Scholar
  208. 208.
    Gregor HP, Sundheim BR, Held KM et al (1952) Studies on ion-exchange resins. V. Water vapor sorption. J Colloid Sci 7(5):511–534Google Scholar
  209. 209.
    Boyd GE, Soldano BA (1953) Osmotic free energies of ion exchangers. Z Electrochem 57:162–175Google Scholar
  210. 210.
    Gregor HP, Frederick M (1953) Thermodynamic properties of ion exchange resins: free energy of swelling as related to ion selectivity. Ann NY Acad Sci 57(3):87–115Google Scholar
  211. 211.
    Van Krevelen DW (1976) Properties of polymers correlated with chemical structure. Russian translation In: Malkin AYa (ed) Khimia, MoscowGoogle Scholar
  212. 212.
    Chalych AE (1987) Diffusion in polymeric systems (Diffuzia v polimernykh sistemakh (in Russian)). Khimia, MoscowGoogle Scholar
  213. 213.
    Soldatov VS, Tsigankov VI, Elinson IS et al (1990) Quantitative description of water sorption by salts forms of fibrous anion exchanger FIBAN A-1. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 63(10):2291–2296Google Scholar
  214. 214.
    Gantman AI, Veshev SA (1985) Water uptake and swelling of ion exchangers. Russ J Phys Chem (Zhurnal fizicheskoy khimii (in Russian)) 59(10):2615–2618Google Scholar
  215. 215.
    Sosinovich ZI, Hogfeldt E, Novitskaya LV et al (1978) Investigation of the hydration of strong anion exchangers using the model of stepwise hydration. Proc Natl Acad Sci Belarussian SSR (Doklady Akademii Nauk BSSR (in Russian)) 22(10):920–923Google Scholar
  216. 216.
    Katz BM, Kutarov VV, Kutovaja LM (1991) Kinetics of water vapor sorption by anion exchange fiber on the base of cellulose and polyacrylonitrile. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 64(8):1713–1717Google Scholar
  217. 217.
    Katz BM, Kutovaja LM, Kutarov VV (1991) Water vapor sorption by carboxylic chemosorption fiber in different ionic forms. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 64(4):846–849Google Scholar
  218. 218.
    Grebennikov S, Serpinski V, Kunin A et al (1983) Thermodynamics of solvent vapor sorption by synthetic fibers. Khim Ind (Sofia) 7:305–308Google Scholar
  219. 219.
    Chiyomi M, Yoshihiko O, Hiroshi I et al (1992) Adsorption of water by a weak acud carboxylated cotton fiber. Sen’I Gakkaishi Fiber 48(12):677–681Google Scholar
  220. 220.
    Razumovsky LP, Zaikov VG, Druzhinina TV et al (1990) Water sorption by the graft copolymere of polyamide and poly-N-N-dimethylaminoethylmethacrylate. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 63(10):2296–2301Google Scholar
  221. 221.
    Rabinovich IB, Krylov EA (1999) Separate determination of the “bound” and “free” water in organic ion exchangers. Russ J Phys Chem (Zhurnal fizicheskoy khimii (in Russian)) 73(5):924–927Google Scholar
  222. 222.
    Brunauer S (1943) The adsorption of gases and vapors: V.1. Physical adsorption. Humprey Milford, LondonGoogle Scholar
  223. 223.
    Jovanovich DS (1969) Physical adsorption of gases. Kolloid Zeitschrift und Zeitschrift fur Polymere 235(1):1203–1225Google Scholar
  224. 224.
    White HJ, Eyring H (1947) The adsorption of water by swelling high polymeric materials. Text Res J 17(10):523–553Google Scholar
  225. 225.
    Sosinovich Z, Novitskaya L, Soldatov V et al (1985) Thermodynamics of water sorption on Dowex 1 of different cross-linking and ionic forms. In: Marinsky J, Markus Y (eds) Ion exch and solvent extraction, vol 9. Marcel Dekker, New York, pp 303–339Google Scholar
  226. 226.
    Soldatov VS, Kosandrovich EG (2005) A new equation of isopiestic curve for polyelecrolytes. Proc Natl Acad Sci Belarus (Doklady NAN Belarusi (in Russian)) 49(4):66–69Google Scholar
  227. 227.
    Soldatov VS, Kosandrovich EG (2008) Chemical equilibria between the ion exchanger and gas phase. In: Recent advances in ion exchange theory and practice (Proceedings of IEX 2008), Fitzwilliam College, Cambridge, pp 103–110Google Scholar
  228. 228.
    US Patent 3275549 (1966)Google Scholar
  229. 229.
    Radl V, Krejkar E (1962) Cation exchangers as drying agents for gases and liquids. Chem Prumysl (Poll) 12(10):579–582Google Scholar
  230. 230.
    Wymore CE (1962) Sulfonic type cation exchange resins as desiccants. Ind Eng Chem Prod Dev 1(3):173–178Google Scholar
  231. 231.
    Shamilov TO, Zhirova LF, Kadyrova MB et al (1980) The gas drying by fibrous anion exchangers. Chem Ind (Khimicheskaya promyshlennost (in Russian)) 3:181Google Scholar
  232. 232.
    Miagkoj ON, Krutskikh AS, Astakhova EV et al (1981) The gas drying by fibrous anion exchangers. In: Application of ion exchange materials (Primenenie ionoobmennykh materialov (in Russian)). Voronezh University, Voronezh, pp 50Google Scholar
  233. 233.
    Zverev MP (1982) Chemosorption fibers Vion: a perspective material for the environment protection. Ind Energetic (Promyshlennaya energetika (in Russian)) 2:12–14Google Scholar
  234. 234.
    Kurilenko OD, Ennan AA, Nekryach EF et al (1975) Ion exchange fibrous materials on the base of cellulose in gas purification. Proc Acad Sci Ukranian SSR (Vestnik AN USSR (in Russian)) 7:37–45Google Scholar
  235. 235.
    Emets LV, Danilova EYa, Strukova IM (1979) Purification of the gas-air mixtures by fibrous ion exchangers. Proc Leningrad Technol Inst (Mezhvuz sbornik nauchnyh trudov (in Russian)) 2:96–99Google Scholar
  236. 236.
    Vulikh AI, Aloviajnikov AA, Varlamova LV (1981) Purification of ventilation gases by fibrous ion exchange sorbents. Color Metals (Tsvetnye metally (in Russian)) 4:38–41Google Scholar
  237. 237.
    Vulikh AI, Zagorskaya MK, Aloviajnikov AA (1970) Sorption of gases and vapors by ion exchange resins. Proc Res Inst Color Metals (Sbornik nauchnyh trudov NII tsvethoj metallurgii (in Russian)) 31:120–133Google Scholar
  238. 238.
    Ermolenko IN, Liubliner IP (1972) Ammonia sorption by fibrous ion exchangers in dynamic conditions. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 45(4):748–751Google Scholar
  239. 239.
    Malinovky EK, Osokov VK, Zverev MP et al (1990) The influence of exchange capacity of carboxylate fiber VION KN-1 on its sorption and physical mechanical characteristics. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 63(1):64–67Google Scholar
  240. 240.
    Soldatov VS, Zenon P, Malgorzata P et al (2004) A strong acid nonwoven filtering medium for deep air purification. Fibres Text East Eur 12(4(48)):56–61Google Scholar
  241. 241.
    Kosandrovich EG, Soldatov VS (2004) Sorption of ammonia from air by fibrous sulfonic cation exchanger FIBAN K-1. Proc Natl Acad Sci Belarus Chem Ser (Vesti NAN Belarusi seriya khimicheskikh nauk (in Russian)) 3:95–98Google Scholar
  242. 242.
    Soldatov VS, Kosandrovich EG, Wasag H (2005) Fibrous polymeric sorbents for air purification. In: Modyfikacja Polimerov. Ofycina Wydawnicza Politechniki Wroclawskiej, Wroclaw, pp 423–427Google Scholar
  243. 243.
    Soldatov VS, Wasag H, Kosandrovich EG et al (2008) Odour control by fibrous ion exchangers. In: Proceedings of NOSE2008 1st international conference on environ odour monitoring and control. Chemical engineering transactions, vol 15. Rome, 6–8 July 2008, pp 387–395Google Scholar
  244. 244.
    Wasag H, Pawlowski L, Soldatov V et al (2009) Removal of ammonia from air by fibrous ion exchangers. Environ Prot Eng 35(3):293–304Google Scholar
  245. 245.
    Hwang TS, Park LW, Kim SM et al (2004) Synthesis of PU-g-AAc ion exchangers by UV radiation-induced graft copolymerization and adsorption of ammonia. J Korean Ind Eng Chem 10(3):409–415Google Scholar
  246. 246.
    US Patent 5783608 (1998)Google Scholar
  247. 247.
    Soldatov VS (1996) Chemically active textile materials for filtration and purification of gases and liquids. In: Proceedings of 7th world filtration congress, vol 1. Budapest, pp 213–217Google Scholar
  248. 248.
    Vulikh AI, Aloviajnikov AA, Nikandrov GA (1979) The gas purification by ion exchangers. Color Metals (Tsvetnye metally (in Russian)) 7:48–52Google Scholar
  249. 249.
    Vulikh AI, Nikolaev AV, Zagorskaya MK et al (1965) Sorption of ammonia and chlorine by ion exchange resins in dynamic conditions. Proc Acad Sci USSR (Doklady Akademii Nauk SSSR (in Russian)) 160(5):1072–1074Google Scholar
  250. 250.
    Okamoto J, Sugo T, Fujiwara K et al (1990) The synthesis of a new type adsorbent for the removal of toxic gas by radiation-induced graft polymerization. Int J Radiat Appl Instr Part C Radiation Phys Chem 35(1–3):113–116Google Scholar
  251. 251.
    Takanobu S (2003) Application of graft polymerization technique to air purification. Kuki Seijo to Kontamineshyon Kontororu Kenkyu Taikai Yokoshu 21:23–26Google Scholar
  252. 252.
    Baskin ZL, Utkin VV, Abdulkhakova ZZ et al (1987) Dynamics of the sorption of hydrogen chloride and ammonia on the carboxyl group containing fibre VION KN-1. Fibre Chem (Khimicheskie volokna (in Russian)) 19(6):48–50Google Scholar
  253. 253.
    Kosandrovich EG (2005) Sorption of ammonia and sulfur dioxide by fibrous ion exchangers. Diss, MinskGoogle Scholar
  254. 254.
    Soldatov VS, Kosandrovich EG (2011) Ion exchange in air purification. In: Sengupta Arup K (ed) Ion exchange solvent extraction, vol 20. CRC Press, Boca Raton, pp 45–117Google Scholar
  255. 255.
    Soldatov VS, Kosandrovich EG (2006) Theoretical description of the sorption equilibria in the gas-ion exchanger system. In: Chemical technology of new substances and materials. Belorusskaya Nauka, Minsk, pp 206–228Google Scholar
  256. 256.
    www.mwgroup.net. Accessed 01 August 2010
  257. 257.
    Hashida Isuo (1974) Development of deodorant fibers and filters. Sci Ind 66(7):256–264Google Scholar
  258. 258.
    Wasag H, Guz L, Sobczuk H et al (2009) Removal of methylamine from air by means of fibrous ion exchangers. In: Ozonek J, Pawlowski A (eds) Monografie Komitetu Inzynierii Srodowiska Polskiej Akademii Nauk, Lublin, Poland 59 (2):247–253Google Scholar
  259. 259.
    Wasag H (2009) Application of fibrous ion exchanger in filters for air deodorization. In: Ozonek J, Pawlowski A (eds) Monografie Komitetu Inzynierii Srodowiska Polskiej Akademii Nauk, Lublin, Poland, 59 (2):255–262Google Scholar
  260. 260.
    Harjuda R, Lehto J (1995) Memorandum of the international workshop on uniform and reliable nomenclature, formulations and experimentation for ion exchange. React Funct Polym 27:147–153Google Scholar
  261. 261.
    Kats BM, Lazarev MYu, Malinovsky EK (1980) Influence of the capacity and porosity of anion exchanger AN-221 on its sorption ability toward SiF4 and HCl. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 53(5):1175–1178Google Scholar
  262. 262.
    Kats BM, My L (1982) Swelling of the weak base macroporous ion exchangers in the process of sorption HCl gas and water vapor. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 55(9):1971–1974Google Scholar
  263. 263.
    Kats BM, Lazarev MYu, Artyushin GA et al (1982) Sorption of HCl by weak base macroporous anion exchanger AN-511. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 55(9):2093–2095Google Scholar
  264. 264.
    Hashida I, Nishimura M (1975) Adsorption of hydrogen chloride on porous resins with different functional groups. J Chem Soc Jap Chem Ind Chem 3:569–571Google Scholar
  265. 265.
    Kutovaya LM, Bartkovskaya YuF, Zverev MP (1990) Application of new anion exchange fibers to sulfur dioxide, hydrogen sulfide and hydrogenchloride sorption. In: Abstracts of presentations of the all-union meeting. The modern aspects of synthesis and production of ion exchange materials (Tez. Dokl. Vsesojuznjgo soveschania “Sovremennie acpekty sinteza I proizvodsyva ionoobmennyh materialov (in Russian)), Cherkassy, pp 133–134Google Scholar
  266. 266.
    Barash AN, Zverev MP, Kalianova NF (1987) Exploitation properties of chemosorption fiber Vion AN-1. Fibre Chem (Khimicheskie volokna (in Russian)) 3:37–38Google Scholar
  267. 267.
    Zverev MP, Barash AN, Grebennikov SF (1988) The processes of mass exchange at the gas sorption by fibers Vion AN-1 and Vion AS-1. Fibre Chem (Khimicheskie volokna (in Russian)) 6:9–10Google Scholar
  268. 268.
    Soldatov VS, Polhovski EM, Sosinovich ZI (2004) Non-exchange sorption of electrolytes by ion exchangers. I. Sorption of hydrochloric and perchloric acids and their sodium salts by Dowex 1x8 resin. React Funct Polym 60:41–48Google Scholar
  269. 269.
    Subbotin AI, Tkachenko VI (1975) The air purification from vapor of acetic acid by ion exchangers. Plastics (Plasticheskije massy (in Russian)) 5:38–39Google Scholar
  270. 270.
    Kelman BYa, Tereschenko VN, Novikov PD (1968) Ion exchange resins (Ionoobmennye smoly (in Russian)). NII Plastmass, MoscowGoogle Scholar
  271. 271.
    Smola VI, Keltsev NV (1976) Atmosphere protection from sulfur dioxide (Zaschita atmocfery ot dvuokisi sery (in Russian)). Metallurgia, MoscowGoogle Scholar
  272. 272.
    Cole R, Shulman HL (1960) Adsorbing sulfur dioxide on dry ion exchange resins for reducing air pollution. Ind Eng Chem 52(10):859–860Google Scholar
  273. 273.
    Vulikh AI, Bogatyrev VA, Aloviajnikov AA (1970) Application of ion exchange resins for sorption gases. Zhurnal vsesoyuznogo khimicheskogo obschestva Mendeleeva (in Russian) 15(4):425–429Google Scholar
  274. 274.
    Hashida I, Nishimura M (1976) Adsorption and desorption of sulfur dioxide by macroreticular strong base anion exchangers. J Chem Soc Jpn Chem Ind Chem 4:131–135Google Scholar
  275. 275.
    Ksendzenko VI, Zil’berg GA, Gorilovskaya NB (1976) Adsorption of sulfur compounds containing gases. In: Ion exchange chromatography (Ionnyj obmen i khromatografiya (in Russian)), vol 20. Voronezh University, Voronezh, p 257Google Scholar
  276. 276.
    Vulikh AI, Zagorskaya MK, Varlamova LV et al (1982) Sorption of sulfur dioxide by stationar layers of the granular ion exchangers from humid gas mixtures. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 55(6):1297–1302Google Scholar
  277. 277.
    Krejcar E (1965) Sorption of sulfur dioxide by anion exchangers. Chem Prum 15(2):77–79Google Scholar
  278. 278.
    Gloviak B, Gostomczyk A (1973) Investigation of sorption of sulfur dioxide by ion exchangers. Staub-Reinhalt Luft 33(10):387–390Google Scholar
  279. 279.
    Khr B, Pantofchieva L, Khistov Y (2000) Adsorption of sulfur dioxide by fixed bed anion exchange resin. Theor Technol (Teoreticheskie osnovy khimicheskoy tekhnologii (in Russian)) 34(2):160–164Google Scholar
  280. 280.
    Pinaev VA, Muromtseva LS (1968) The sorption of sulfur dioxide by the synthetic resins. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 41(9):2092–2094Google Scholar
  281. 281.
    Ksendzenko VI, Zilberg TA, Gorilovskaya NB et al (1974) The sorption of sulfur containing gases on anion exchangers. Proc Moscow Inst Fine Chem Technol 4(2):68–74Google Scholar
  282. 282.
    Buzanova GP, Volf IF, Onokhin SA (1976) The gas purification from sulfur dioxide by ion exchange sorption. Theory Pract Ion Exch Processes (Teoria i praktika sorbtsionnykh protsessov (in Russian)) 11:102–106Google Scholar
  283. 283.
    Nikandrov GA, Vulikh AI, Zagorskaya MK (1971) The sorption of sulfur dioxide by anion exchangers. In: Ion Exch and Chromatography (Ionnyj obmen i khromatografiya (in Russian)), vol 15. Voronezh University, Voronezh, pp 218–220Google Scholar
  284. 284.
    Nikandrov GA (1978) Gas purification from sulfur dioxide by ion exchange sorbents. Ind Sanitary Gas Purif (Promyshlennaya i sanitarnaya ochistka gazov (in Russian)) 4:14Google Scholar
  285. 285.
    Youngquist GR, Garg SK (1972) Sorption of sulfur dioxide by macroreticular ion exchange resins. Ind Eng Chem Proc Des Dev 11(2):259–261Google Scholar
  286. 286.
    Hashida I, Nishimura M (1972) Adsorption of sulfur dioxide from gas on porous resins. J Chem Soc Jpn Chem Ind Chem 1(1):179–184Google Scholar
  287. 287.
    Layton L, Youngquist GR (1969) Sorption of sulfur dioxide by ion exchange resins. Ind Eng Chem Proc Des Develop 8(3):317–324Google Scholar
  288. 288.
    Hashida I, Nishimura M (1973) Adsorption of sulfur dioxide by porous ion exchangers. J Chem Soc Jpn Chem Ind Chem 6:1195–1200Google Scholar
  289. 289.
    Avgul NN, Belyakova LD, Dadugina NG (1976) The adsorption heat of sulfur dioxide on macroporous weak base anion exchangers. Colloid J (Kolloidnyj zhurnal (in Russian)) 38(1):129–132Google Scholar
  290. 290.
    Belyakova LD, Galitskaya NB, Kiselev AV (1976) Adsorption of sulfur dioxide by macroporous vinylpyridine anion exchangers. Colloid J (Kolloidnyj zhurnal (in Russian)) 38(6):1060–1064Google Scholar
  291. 291.
    Belyakova LD, Galitskaya NB, Kiselev AV (1977) Adsorption of sulfur dioxide by macroporous vinylpyridine anion exchangers. Colloid J (Kolloidnyj zhurnal (in Russian)) 39(2):339–343Google Scholar
  292. 292.
    Belyakova LD, Galitskaya NB, Kiselev AV (1979) Adsorption of sulfur dioxide by macroporous vinyl pyridine anion exchangers. Colloid J (Kolloidnyj zhurnal (in Russian)) 41(4):627–631Google Scholar
  293. 293.
    Belyakova LD, Galitskaya NB, Kiselev AV (1981) Adsorption of sulfur dioxide by macroporous vinyl pyridine anion exchangers. Colloid J (Kolloidnyj zhurnal (in Russian)) 43(6):1027–1033Google Scholar
  294. 294.
    Varlamova LV, Ksenzenko VI, Aloviajnikov AA (1984) Dynamics of sulfur dioxide sorption on fibrous cation exchanger Vion KN-1. Ind Sanitary Gas Purif (Promyshlennaya i sanitarnaya ochistka gazov (in Russian)) 6:11Google Scholar
  295. 295.
    Bergen RL (1971) Removal of SO2 from the gas mixture by the fibers containing polymeric amines. In: Special center symposium. Proceedings of symposium on technology for the future to control industrial and urban wastes. University of Missouri-Rolla, pp 73–75Google Scholar
  296. 296.
    Shunkevich AA, Sergeev GI, Elinson IS (1990) Fibrous ion exchangers in protection of the atmosphere. Zhurnal vsesoyuznogo khimicheskogo obschestva Mendeleeva (in Russian) 35(1):64–72Google Scholar
  297. 297.
    Kosandrovich EG, Soldatov VS (2006) Sorption of sulfur dioxide from the air by fibrous polyampholyte. In: Proceedings of the III Belarus conference. Scientific technical problems of production of chemical fibers in Belarus, Mogilev, pp 28–33Google Scholar
  298. 298.
    Hwang TS, Kim YS, Lee HK et al (2004) Removal of toxic gases on strong- and weak-base anion exchange fibers. J Korean Ind Eng Chem 10(4):504–510Google Scholar
  299. 299.
    Hwang TS, Kim YS, Park JW et al (2004) Adsorption properties of SO2 on PAN-based fibrous ion exchanger and its potential for air purification. J Korean Ind Eng Chem 10(1):139Google Scholar
  300. 300.
    Hwang TS, Choi JE, Kang KS (2002) Adsorption properties of SO2 using fibrous strong-base anion ion exchange scrubber. Polymer (Korea) 26(5):661Google Scholar
  301. 301.
    Aldabas I, Bogoeva G, Stojanovski G et al (1990) Cation exchangers on the base of PAN with capability to sorb SO2. Hem Ind 44(4):129–136Google Scholar
  302. 302.
    Druzhinina TV, Lishevskaya MO, Lazarev My et al (1990) Influence of the functional groups nature of the fibrous anion exchangers on the polycaproamide base on the sorption of sulfur and nitrogen oxides and hydrogen chloride. In: Abstracts of presentations of the all-union meeting. The modern aspects of synthesis and production of ion exchange materials (Tez. Dokl. Vsesojuznjgo soveschania Sovremennie acpekty sinteza i proizvodsyva ionoobmennyh materialov (in Russian)), Cherkassy, pp 48–49Google Scholar
  303. 303.
    Varlamova LV, Larina TV, Sudareva VE (1985) The influence of low temperatures on sorption of sulfur dioxide on ion exchangers. Color Metals (Tsvetnye metally (in Russian)) 11:31–32Google Scholar
  304. 304.
    Katz BM, Kutovaya LM, Lazarev MYu et al (1989) Sorption of sulfur dioxide and water vapor by chemosorption fibers on the base of polyacrylonitrile. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 62(2):289–293Google Scholar
  305. 305.
    Neyaglov AA, Digurov NG, Bukharkina TV et al (1991) Kinetics and mechanism of the liquid phase oxidation of hydrogen sulfide by chelate complex of tri-valent iron (Fe3+-EDTA). Kinet Catal (Kinetika i kataliz (in Russian)) 32(3):548–552Google Scholar
  306. 306.
    Potapova LL, Yegiazarov YuG, Soldatov VS et al (1998) The oxidation of hydrogen sulfide on fibrous anion exchanger FIBAN A-1 with coordination saturated complex Fe-EDTA. Proc Acad Sci Belarus (Doklady Akademii Nauk Belarusi (in Russian)) 42(3):54–57Google Scholar
  307. 307.
    Potapova LL, Shunkevich AA, Akulich ZI et al (2000) The oxidation of hydrogen sulfide on fibrous anion exchangers with fixed Fe-EDTA complexes. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 73(5):780–784Google Scholar
  308. 308.
    Soldatov VS, Kashinsky AV, Martinovich VI (2009) Catalytic air purification from hydrogen sulfide by ion exchange fibers FIBAN. Chem Technol (Khimicheskaya tekhnologia (in Russian)) 6:364–369Google Scholar
  309. 309.
    Nabieva ZM, Merenkov KV, Yusupov MM (1968) Nitrogen oxides sorption from the exhaust by ion exchange adsorbents. In: Proceedings of conference. Ion exchange materials and their applications (Ionoobmennye materially i ikh primenenie (in Russian)), Alma-Ata, SSSR, pp 232–235Google Scholar
  310. 310.
    Ganzha GF, Filipov VI, Mazur NA et al (1978) Sanitary air purification from nitrogen oxides by fibrous ion exchange materials. Ind San Gas Purif (Promyshlennaya i sanitarnaya ochistka gazov (in Russian)) 3:14–15Google Scholar
  311. 311.
    Soldatov VS, Kashinsky AV, Korshunova TA et al (2006) The air purification from nitrogen dioxide by aqueous solution of carbamide on ion exchange fibrous carrier. Chem Technol (Khimicheskaya tekhnologia (in Russian)) 5:34–38Google Scholar
  312. 312.
    Miagkoy ON, Serdiukova MI, Perunova NA (1982) Sorption of the hydrazine vapor by ion exchange materials. In: Theory and practice of sorption processes (Teoria i praktika sorbtsionnykh protsessov (in Russian)), vol 15. Voronezh University, Voronezh, pp 73–77Google Scholar
  313. 313.
    Asaulova TA, Kats BM (1976) Air purification from chlorine and chlorine compounds by ion exchange fibrous materials. In: Ion exchange and chromatography (Ionnij obmen i khromatografia (in Russian)). Voronezh University, Voronezh, pp 253–254Google Scholar
  314. 314.
    Serdiukova MI, Petrunin AN, Miagkoj ON et al (1976) Sorption of iodine on fibrous polyacrylonitrile anion exchangers. In: Ion exchange and chromatography (Ionnij obmen i khromatografia (in Russian)). Voronezh University, Voronezh, pp 200–201Google Scholar
  315. 315.
    Khamizov RKh, Tikhonov NA (2002) On the possibility of purification of anodic gases of aluminum production from fluoride and sulfur compounds by the wet filtration on anion exchange fibrous materials. Sorption and Chromatographic 3(2):331–339Google Scholar
  316. 316.
    Miagkoj ON, Ivanova EV, Serdiukova MI et al (1985) Hygienic properties of ion exchangers AV-17-8 and VION AN-1 for sanitary air purification from ozone In: Theory and practice of sorption processes (Teoria i praktika sorbtsionnykh protsessov (in Russian)). Voronezh University, Voronezh, pp 84–89Google Scholar
  317. 317.
    Serdiukova MI, Lovchinovskaya TA, Krutskikh AS et al (1986) Sanitary chemical properties of filtering ion exchange material VION AN-1 for air purification from ozone. Higiene Sanit (Gigiena i sanitariya (in Russian)) 5:76–79Google Scholar
  318. 318.
    Mohan D, Charles U, Jr P (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142(1–2):1–53Google Scholar
  319. 319.
    DeMarco MJ, SenGupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37:164–176Google Scholar
  320. 320.
    Cumbal L, SenGupta AK (2005) Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: role of Donnan membrane effect. Env Sci Tech 39:6508–6515Google Scholar
  321. 321.
    Lin J-C, SenGupta AK (2009) Hybrid anion exchange fibers with dual binding sites: simultaneous and reversible sorption of perchlorate and arsenates. Environ Eng Sci 11:1673–1683Google Scholar
  322. 322.
    Sarkar S, Blaney LM, Gupta A et al (2008) Arsenic removal from ground water and its safe containment in a rural environment: validation of a sustainable approach. Environ Sci Technol 42:4268–4273Google Scholar
  323. 323.
    Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613Google Scholar
  324. 324.
    Sarkar S, Blaney LM, Gupta A et al (2007) Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React Funct Polym 67:1599–1611Google Scholar
  325. 325.
    Puttamaraju P, SenGupta AK (2006) Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: role of ion exchanger support. Ind Eng Chem Res 45:7737–7742Google Scholar
  326. 326.
    Cumbal L, Greenleaf J, Leun D et al (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Polym 54:167–180Google Scholar
  327. 327.
    Zhao D, SenGupta AK (2000) Ligand separation with a copper(II) -loaded polymeric ligand exchanger. Ind Eng Chem Res 39(2):455–462Google Scholar
  328. 328.
    Solntseva DP, Krasnov MS, Kalinina RN et al (2003) The modified ion exchange for fluorination of the drinking water. Plastics (Plasticheskie massy (in Russian)) 11:43–45Google Scholar
  329. 329.
    Emel’yanova GI, Gorlenko LE, Voronova LV et al (1999) Low-temperature catalytic oxidation of hydrogen sulfide into sulfur on VION metal-containing filament. Kinet Catal 40(1):15–17Google Scholar
  330. 330.
    Seko N, Basuki F, Tamada M et al (2004) Rapid removal of arsenic (V) by zirconium (IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization. React Funct Polym 59(3):235–241Google Scholar
  331. 331.
    Rajakovic LV, Mitrovic MM (1992) Arsenic removal from water by chemisorption filters. Environ Pollut 75(3):279–287Google Scholar
  332. 332.
    Lenoble V, Chabroullet C, Al Shukry R et al (2004) Dynamic arsenic removal on MnO2-loaded resin. J Colloid Interface Sci 280(1):62–67Google Scholar
  333. 333.
    Mitskevich DE, Soldatov VS, Sokol VP et al (2010) A system oxidant: sorbent for the purification of drinking water from oxyanions of As(III) и As(V). Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 83(3):415–420Google Scholar
  334. 334.
    Soldatov V (2003) Selective fibrous ion exchangers and sorbents. In: Science papers of the institute of organic and polymer technology of the Wroclaw University of Technology, Wroclaw. Proceedings of XVI science conference, Wroclaw. Oficyna wydawnicza Polytechniki Wroclawskiej, pp 110–113Google Scholar
  335. 335.
    Yoshioka T, Shimamure M (1984) Studies of polystyrene-based ion exchange fiber. II. A novel fiber-form catalyst for sucrose inversion and methyl acetate hydrolysis. Bull Chem Soc Jpn 52(2):334–337Google Scholar
  336. 336.
    Yegiazarov YuG, Potapova LL, Radkevich VZ et al (2001) New catalytic systems on the base of fibrous ion exchangers. Chem Sustain Dev (Khimia v interesakh ustoichivogo razvitia (in Russian)) 9:417–431Google Scholar
  337. 337.
    Author’s certificate USSR SU 1768580 A1 (1990)Google Scholar
  338. 338.
    Yegiazarov YuG, Radkevich VZ, Johann J et al (2000) Fibrous catalyst for oxidation of hydrogen with oxygen. React Funct Polym 44:145–152Google Scholar
  339. 339.
    Radkevich VZ, Shunkevich AA, Kistanova IE et al (2000) The activity of palladium catalysts on the base of fibrous sulfonic cation exchanger FIBAN K-1 in reaction of hydrogen oxidation. Russ J Appl Chem (Zhurnal prikladnoy khimii (in Russian)) 73(11):1861–1864Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Physical Organic Chemistry of the National Academy of Sciences of BelarusMinskRepublic of Belarus
  2. 2.Lublin University of TechnologyLublinPoland

Personalised recommendations