Skip to main content

Principles of Ion Exchange Membrane Electrodialysis for Saline Water Desalination

  • Chapter
  • First Online:
  • 4197 Accesses

Abstract

Irreversible thermodynamics is the fundamental principle in ion exchange membrane electrodialysis. The mechanism of saline water desalination is explained based on irreversible thermodynamics. The overall mass transport equation is developed on the basis of the electrodialysis experiments. The phenomenological equation appearing in irreversible thermodynamics is substantially identical to the overall mass transport equation. The overall membrane pair characteristics appearing in the overall mass transport equation are expressed by functions of the overall hydraulic permeability of the membrane pair. In an electrodialyzer, solution velocities in desalting cells vary between the cells. Salt concentrations are decreased along the flow-passes in desalting cells. These events give rise to electric resistance distribution and current density distribution in the electrodialyzer and exert an influence on the limiting current density of the electrodialyzer. The electrodialysis process is classified into a continuous (one-pass flow), a batch, and a feed-and-bleed process. The performance of each process is discussed using computer simulation (electrodialysis program) and by applying the principles of mass transport, current density distribution, cell voltage, energy consumption, and limiting current density. An electrodialysis program is operated for desalinating saline water, and the performance of a practical-scale electrodialyzer is discussed with figures created using computer simulation. The program aims to work as a pilot plant operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Planck M (1890) Ueber die potentialdifferenz zwischen zwei verdunnten losungen binarer elektrolyte. Ann Der Physik u Chemie 40:561–576

    Article  Google Scholar 

  2. Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1:73–90

    Article  CAS  Google Scholar 

  3. Michaelis L, Fujita A (1925) Permselectivity of biological membranes. Biochem Z 158:28, 161:47; 164:23

    CAS  Google Scholar 

  4. Teorell T (1935) An attempt to formulate a quantitative theory of membrane permeability. Proc Soc Exp Biol Med 33:282–285

    CAS  Google Scholar 

  5. Meyers KH, Sievers JF (1936) La permeabilite des membranes I, Theorie de la permeabilite ionique. Helv Chim Acta 19:649–664; La permeabilite des membranes II, Essis avec des membranes selectives artifielles. Helv Chim Acta 19:665–677

    Google Scholar 

  6. Meyers KH, Straus W (1940) La permeabilite des membranes VI, Sur le passage du courant electrique a travers des membranes selectives. Helv Chim Acta 23:795–800

    Article  Google Scholar 

  7. Wyllie R, Patnode HW (1950) The development of membranes from artificial cation-exchange materials with particular reference to the determination of sodium-ion activity. J Phys Chem 54:204

    Article  CAS  Google Scholar 

  8. Juda W, McRae WA (1950) Coherent ion-exchange gels and membranes. J Am Chem Soc 72:1044; Ion-exchange materials and method of making and using the same. USP at. 2,636,851

    Google Scholar 

  9. Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 45:143–179

    Article  CAS  Google Scholar 

  10. Onsager L (1931) Reciprocal relations in irreversible process. Phys Rev 37:405–426

    Article  CAS  Google Scholar 

  11. Kedem O, Katchalsky A (1963) Permeability composite membranes, part 1. Electric current volume flow and flow of solute through membranes. Trans Faraday Soc 59:1918–1930

    Article  Google Scholar 

  12. House CR (1974) Water transport in cells and tissues. Edward Arnold, London

    Google Scholar 

  13. Schulz SG (1980) Basic principles of membrane transport. Cambridge University Press, Cambridge

    Google Scholar 

  14. Tanaka Y (2006) Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis. J Membr Sci 281:517–531

    Article  CAS  Google Scholar 

  15. Bird RB, Stewart WE, Lightfoot EN (1965) Transport phenomena. Wiley, New York

    Google Scholar 

  16. Taky M, Pourcelly G, Lebon F, Gavach C (1992) Polarization phenomena at the interface between an electrolyte solution and an ion-exchange membrane. J Electroanal Chem 336:171–194

    Article  CAS  Google Scholar 

  17. Takemoto N (1972) The concentration distribution in the interfacial layer at desalting side in ion exchange membrane electrodialysis. J Chem Soc Jpn 1972:2053–2058

    Google Scholar 

  18. Rubinstein I, Shtilman L (1979) Voltage against current voltage of cation-exchange membranes. J Chem Soc, Faraday Trans II 75:231–246

    Article  CAS  Google Scholar 

  19. Rosenberg NW, Tirrel CE (1957) Limiting currents in membrane cells. Ind Eng Chem 49:780–784

    Article  CAS  Google Scholar 

  20. Rubinstein I (1977) A diffusion model of “water splitting” in electrodialysis. J Phys Chem 81:1431–1436

    Article  CAS  Google Scholar 

  21. Simons R (1984) Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes. Electrochim Acta 29:151–158

    Article  CAS  Google Scholar 

  22. Simons R (1985) Water splitting in ion exchange membranes. Electrochim Acta 30:275–282

    Article  CAS  Google Scholar 

  23. Tanaka Y (2010) Water dissociation reaction generated in an ion exchange membrane. J Membr Sci 350:347–360

    Article  CAS  Google Scholar 

  24. Peer AM (1956) Discus Faraday Soc 21:124 (communication in the membrane phenomena special issue)

    Google Scholar 

  25. Kooistra W (1967) Characterization of ion exchange membranes by polarization curves. Desalination 2:139–147

    Article  CAS  Google Scholar 

  26. Spiegler KS (1971) Polarization at ion exchange membrane-solution interface. Desalination 9:367–385

    Article  CAS  Google Scholar 

  27. Tanaka Y (2005) Limiting current density of an ion-exchange membrane and of an electrodialyzer. J Membr Sci 266:6–17

    Article  CAS  Google Scholar 

  28. Cowan DA, Brown JH (1959) Effect of turbulence on limiting current in electro- dialysis cells. Ind Eng Chem 51:1445–1448

    Article  Google Scholar 

  29. Tanaka Y (2003) Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. J Membr Sci 215:265–279

    Article  CAS  Google Scholar 

  30. Azechi S (1980) Electrodialyzer. Bull Soc Sea Water Sci Jpn 34:77–83

    Google Scholar 

  31. Minz MS (1963) Criteria for economic optimization are presented in the form of comparative performance equations for various methods of operation. Ind Eng Chem 55:19–28

    Google Scholar 

  32. Itoi S, Komori R, Terada Y, Hazawa Y (1978) Basis of electrodialyzer design and cost estimation. Ind Water 239:29–40

    Google Scholar 

  33. Leiz F B (1977) Measurements and control in electrodialysis. Desalination 59:381–401, presented at the international congress on desalination and water re-use, Tokyo

    Google Scholar 

  34. Belfort G, Daly JA (1970) Optimization of an electrodialysis plant. Desalination 8:153–166

    Article  Google Scholar 

  35. Avriel M, Zeligher N (1972) A computer method for engineering and economic evaluation of electrodialysis plant. Desalination 10:113–146

    Article  Google Scholar 

  36. Lee HJ, Sarfert F, Strathmann H, Moon SH (2002) Designing of an electrodialysis desalination plant. Desalination 142:267–286

    Article  CAS  Google Scholar 

  37. Moon P, Sandi G, Stevens D, Kizilel R (2004) Computational modeling of ionic transport in continuous and batch electrodialysis. Sep Sci Technol 29:2531–2555

    Article  Google Scholar 

  38. Fidaleo M, Moresi M (2005) Optimal strategy to model the electrodialytic recovery of a strong electrolyte. J Membr Sci 260:90–111

    Article  CAS  Google Scholar 

  39. Sadrzadeh M, Kaviani A, Mohammadi T (2007) Mathematical modeling of desalination by electrodialysis. Desalination 206:534–549

    Article  Google Scholar 

  40. Nikonenko VV, Pismenskaya ND, Itoshin AG, Zabolotsky VI, Shudrenko AA (2008) Description of mass transfer characteristics of ED and EDI apparatus by using the similarity theory and compartmentation method. Chem Eng Proc 47:1118–1127

    Article  CAS  Google Scholar 

  41. Brauns E, De Wilde W, Van den Bosch B, Lens P, Pinoy L, Empsten M (2009) On the experimental verification of an electrodialysis simulation model for optimal stack configuration design through solver software. Desalination 249:1030–1038

    Article  CAS  Google Scholar 

  42. Tanaka Y (2010) A computer simulation of ion exchange membrane electrodialysis for concentration of seawater. Membr Water Treat 1:13–37

    Google Scholar 

  43. Tanaka Y (2009) A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water. Desalination 249:809–821

    Article  CAS  Google Scholar 

  44. Tanaka Y (2010) Simulation of an ion exchange membrane electrodialysis process for continuous saline water desalination. Desalin Water Treat 22:271–285

    Article  CAS  Google Scholar 

  45. Kusakari K, Kawamata F, Matsumoto N, Saeki H, Terada Y (1977) Electrodialysis plant at Hatsushima. Desalination 21:45–50

    Article  CAS  Google Scholar 

  46. Tani Y, Doi K, Terada Y, Yokota M, Wakayama M (1978) Electrodialysis seawater desalination unit in a vessel. Ind Water 239:86–89

    CAS  Google Scholar 

  47. Rapp HJ, Pfromm PH (1998) Electrodialysis for chloride removal from the chemical recovery cycle of a kraft pulp mill. J Membr Sci 146:249–261

    Article  CAS  Google Scholar 

  48. Eimidaoui A, Chay L, Tahaikt M, Menkouchi Sahli MA, Taky M, Tiyal F, Khalidi A, Alaoui Hafidi MyR (2006) Demineralisation for beet sugar solutions using an electrodialysis pilot plant to reduce melassigenic ions. Desalination 189:209–214

    Article  Google Scholar 

  49. Banasiak LJ, Kruttschnitt TW, Schafer AI (2007) Desalination using electrodialysis as a function of voltage and salt concentration. Desalination 205:38–46

    Article  CAS  Google Scholar 

  50. Walha K, Amar RB, Firdaous L, Quemeneur F, Jaouen P (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia, performance and cost comparison. Desalination 207:95–106

    Article  CAS  Google Scholar 

  51. Kabay N, Yuksel M, Samata S, Arar O, Yuksel U (2007) Removal of nitrate from ground water by a hybrid process combining electrodialysis and ion exchange process. Sep Sci Technol 42:2615–2627

    Article  CAS  Google Scholar 

  52. Kabay N, Arar O, Samatya S, Yuksel U, Yuksel M (2008) Separation of fluoride from aqueous solution by electrodialysis. Effect of process parameters and other ionic species. J Hazard Mater 153:107–113

    Article  CAS  Google Scholar 

  53. Kabay N, Arar O, Acar F, Ghazal A, Yuksel U, Yuksel M (2008) Removal of boron from water by electrodialysis, effect of feed characteristics and interfering ions. Desalination 223:63–72

    Article  CAS  Google Scholar 

  54. Parulekar SJ (1998) Optimal current and voltage trajectories for minimum energy consumption in batch electrodialysis. J Membr Sci 148:91–103

    Article  CAS  Google Scholar 

  55. Demircioglu M, Kabay N, Ersoz E, Kurucaovali I, Safak C, Gizli N (2001) Cost comparison and efficiency modeling in the electrodialysis of brine. Desalination 136:317–323

    Article  CAS  Google Scholar 

  56. Ahmed MI, Chang HT, Selman JR, Holsen TM (2002) Electrochemical chromic acid regeneration process, fitting of membrane transport properties. J Membr Sci 197:63–74

    Article  CAS  Google Scholar 

  57. Ortiz JM, Sotoca JA, Exposito E, Gallud F, Garcia-Garcia V, Montiel V, Aldaz A (2005) Brackish water desalination by electrodialysis, batch recirculation operating modeling. J Membr Sci 252:65–75

    Article  CAS  Google Scholar 

  58. Tanaka Y (2009) A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water. Desalination 249:1039–1047

    Article  CAS  Google Scholar 

  59. Koga S, Mitsugami Y (1978) Supply of potable water from brackish water by electro-dialysis desalination process at Ohoshima island in Tokyo prefecture. Ind Water 239:41–47

    CAS  Google Scholar 

  60. Kawahara T (1994) Construction and operation experience of a large-scale electrodialysis water desalination plant. Desalination 96:341–348

    Article  CAS  Google Scholar 

  61. Okada K, Tomita M, Tamura Y (1975) Electrodialysis in the treatment of dairy products. In: Symposium separation processes by membranes, ion-exchange and freeze-concentration in food industry, Paris, 13–14 Mar 1975

    Google Scholar 

  62. Matsunaga Y (1986) Reuse of waste water by electrodialytic treatment. In: Industrial application of ion exchange membranes, vol 1. Research group of electrodialysis and membrane separation technology, Soc Sea Water Sci Jpn 188–196

    Google Scholar 

  63. Ryabstev AD, Kotsupalo NP, Titarenko VI, Igumenov IK, Gelfond NV, Fedotova NE, Moroziva NB, Shipachev VA, Tibilov AS (2001) Development of two-stage electrodialysis set-up for economical desalination of artesian and surface waters of sea type. Desalination 137:207–214

    Article  Google Scholar 

  64. Rapp HJ, Pfromm PH (1998) Electrodialysis field test for selective chloride removal from the chemical recovery cycle of a kraft pulp mill. Ind Eng Chem Res 37:4761–4767

    Article  CAS  Google Scholar 

  65. Thompson R, Paleologou M, Wong RY, Berry RM (1997) Separation of sulphide from hydroxide in white liquor by electrodialysis. J Pulp Paper Sci 23:J182–J187

    CAS  Google Scholar 

  66. Tanaka Y (2010) A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water. Desalination 254:99–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tanaka, Y. (2012). Principles of Ion Exchange Membrane Electrodialysis for Saline Water Desalination. In: Dr., I., Luqman, M. (eds) Ion Exchange Technology I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1700-8_5

Download citation

Publish with us

Policies and ethics