Computer Modeling of Strong Acid Cation Exchangers on Styrene: Divinylbenzene Matrix

  • V. S. Soldatov
  • V. M. Zelenkovskii


This chapter is a review of the authors’ works on the mathematical and computer modeling of ion exchangers on styrene–divinylbenzene matrix. A mathematical model based on the concept of influence of neighboring exchange sites on the properties of each other allowed explaining the dependence of selectivity and additive properties of the ion exchange system on the degree of ion exchange. The information of interaction between the nearest neighbors and water molecules in the vicinity of the functional groups as well of the structures on the fragments of the polymeric structure of the ion exchanger has been obtained using quantum chemistry nonempirical ab initio calculations. These data have been obtained for different degrees of hydration (0–10 water molecules per sulfonic group) and the following counter ions: H+, Li+, Na+, K+, Rb+, Cs+, Ag+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Cd2+, Ni2+, and Pb2+. The mathematical modeling as well as molecular mechanic and quantum chemistry calculations is consistent with the main concepts used in interpreting of ion exchange equilibria: a concept of nonregularity of the exchange sites in polymeric ion exchangers and competitive interaction of the counter ions with the fixed ion and water molecules.


Water Molecule Sulfonic Group Hydration System Sorption Complex Effective Electrical Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by Belarus foundation for the fundamental research, grants No: X09-091.


  1. 1.
    Frenkel D, Smit B (2001) Understanding molecular simulations. From algorithms to applications, vol 1, 2nd edn, Computational science series. Academic, San DiegoGoogle Scholar
  2. 2.
    Holm C, Joanny JF, Kremer K et al (2004) Polyelectrolyte theory. Adv Polym Sci 166:67–111CrossRefGoogle Scholar
  3. 3.
    Lyubartsev AP, Nordenskiöld L (2002) Computer simulations of polyelectrolytes. In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications, vol 3. American Scientific, Los Angeles, Chapter 11Google Scholar
  4. 4.
    Okomoto Y (2004) An ab initio study of the side chain of Nafion. Chem Phys Lett 389:64–67CrossRefGoogle Scholar
  5. 5.
    Warren DS, McQuillan AJ (2008) Infrared spectroscopic and DFT vibrational mode study of perfluoro(2-ethoxyethane)sulfonic acid (PES), a model Nafion chain molecule. J Phys Chem B 112:10535–10543CrossRefGoogle Scholar
  6. 6.
    Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions and phenomenology. Chem Rev 104:4637–4678CrossRefGoogle Scholar
  7. 7.
    Butyrskaya EV, Shaposhnik VA, Butyrskii AM et al (2007) Interpretation of hypsochromic and bathochromic shifts of vibrational frequencies of a cation exchanger. J Anal Chem 62:930–934CrossRefGoogle Scholar
  8. 8.
    Butyrskaya EV, Shaposhnik VA (2002) Interpretation of infrared spectra for ion exchange systems. Opt Spectrosc 202:370–374CrossRefGoogle Scholar
  9. 9.
    Shaposhnik VA, Butyrskaya EV (2004) Computer simulations of cation exchange membrane structure. An elementary act of hydrogen ion transport. Russ J Electrochem 40:370–374CrossRefGoogle Scholar
  10. 10.
    Nechaeva LS, Butyrskaya EV, Shaposhnik VA (2009) Structurally-group analysis of carboxylic cation exchanger. Sorp Chromatogr Process (Sorbzionnye i Chromatografycheskiye prozessy, Rus) 9:208–213Google Scholar
  11. 11.
    Soldatov VS, Zelenkovskii VM, Bezyazychnaya TV (2003) Structure and properties of spatial polyelectrolytes on styrene-divinylbenzene matrixes. React Funct Polym 54:63–85CrossRefGoogle Scholar
  12. 12.
    Soldatov VS (1993) Mathematical modeling of ion exchange equilibria on resinous ion exchangers. React Polym 19:105–121CrossRefGoogle Scholar
  13. 13.
    Soldatov VS, Gogolinsky VI, Zelenkovskii VM et al (1996) Computer model of sulfonated styrene-divinylbenzene copolymers. In: Creig JA (ed) Ion exchange. Development and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  14. 14.
    Soldatov VS, Bezyazychnaya TV, Zelenkovskii VM et al (1998) Effect of irregularities in the region of crosslinking junction on the structure of network polystyrene. Polym Sci B 40:268–271Google Scholar
  15. 15.
    Soldatov VS, Bezyazychnaya TV, Gogolinskii VI et al (1999) Influence of cross-linking on selectivity of cation and anion exchange on styrene-divinylbenzene matrix. Russ J Phys Chem (Zhurn Fiz Khim) 73:1080–1084Google Scholar
  16. 16.
    Soldatov VS, Bezyazychnaya TV, Gogolinskii VI et al (1999) Evaluation of the spatial distribution of sulfonic groups in the ring fragments of polystyrene networks. Polym Sci A 41:1085–1089Google Scholar
  17. 17.
    Zelenkovskii VM, Bezyazychnaya TV, Soldatov VS (2007) Hydration of strongly basic anionites: ab initio calculations. Polym Sci B 49:30–35CrossRefGoogle Scholar
  18. 18.
    Zelenkovskii VM, Bezyazychnaya TV, Soldatov VS (2004) Quantum-chemical modeling of interactions between adjacent functional groups in cationites. Polym Sci A 46:1085–1089Google Scholar
  19. 19.
    Soldatov VS, Zelenkovskii VM, Bezyazychnaya TV (2004) Computer modeling of the hydration of the functional group in ion exchangers. In: Cox M (ed), Ion Exchange technology for today and tomorrow (Proceedings of IEX’04). University of Hertforthire, CambridgeGoogle Scholar
  20. 20.
    Soldatov VS, Zelenkovskii VM, Bez’yazychnaya TV (2001) The relative positions of ions in hydrate structures of p-ethyl benzene sulfonates. Dokl NAN Belarusi 45:75–80 (Russ)Google Scholar
  21. 21.
    Zelenkovskii VM, Soldatov VS, Bezyazychnaya TV (2004) Non-empirical calculations of p-ethylbenzenesulfo-acid salts structure. Vestsi Natsyyanal’nai Akad Navuk Belarusi Ser Khim Navuk 4:24–27 (Russ)Google Scholar
  22. 22.
    Zelenkovskii VM, Bezyazychnaya TV, Soldatov VS (2010) Quantum chemical calculations of vibrational spectra of para-ethylbenzene sulfinic acid. J Appl Spektrosk 77:189–193CrossRefGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure systems. J Comp Chem 14:1347–1363CrossRefGoogle Scholar
  24. 24.
    Huzinaga S, Andzelm J, Klobukowski M (1984) Gaussian basis sets for molecular calculations. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Reichenberg D, McCaley DJ (1955) Properties of ion exchange resin relation to their structure. VII Cation exchange equilibria on sulfonated polysterene resins of varying degree of crosslinking. J Chem Soc 77:2741–2749Google Scholar
  26. 26.
    Soldatov VS, Marzynkevich RV, Pokrovskaya AI et al (1976) Comparative characteristics of sulfostyrene resins with different isomers of divinylbenzene. Russ J Phys Chem (Zhurn Fiz Khim) 50:480–484Google Scholar
  27. 27.
    Soldatov VS, Marzynkevich RV, Pokrovskaya AI (1969) The features of ion exchange on the resins with high cross-linkage. Russ J Phys Chem (Zhurn Fiz Khim) 43:2889–2893Google Scholar
  28. 28.
    Samsonov GV, Trostianskaya EB, Elkin GE (1969) Ion exchange. Sorption of organic substances. Nauka, LenigradGoogle Scholar
  29. 29.
    Arkhangelskij LK, Materova EA, Mikhailova SS et al (1968) Investigation of the relation between the apparent constants of equilibria, the composition of the ion exchanger and the water uptake for the regions of the large relative contents of one of the counter ions. In: Thermodynamics of ion exchange (Termodinamika ionnogo obmena, Rus). Nauka i Technica, MinskGoogle Scholar
  30. 30.
    Soldatov VS, Kuvaeva ZI, Bychkova VA et al (1998) Ion-exchange equilibria of aliphatic amino acid cations on a liquid sulphonic ion exchanger: comparison with ion exchange resins. React Funct Polym 38:237–247CrossRefGoogle Scholar
  31. 31.
    IUPAC (1999) Glossary of terms used in theoretical organic chemistry. Pure Appl Chem 71:1919–1981CrossRefGoogle Scholar
  32. 32.
    Zundel G (2000) Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv Chem Phys 111:1–217CrossRefGoogle Scholar
  33. 33.
    Starobinets GL, Soldatov VS (1963) On thermodynamics of ion exchange on sulfonated copolymers of styrene and divinylbenzene. Russ J Phys Chem (Zhurn Fiz Khim) 37:294–299Google Scholar
  34. 34.
    Soldatov VS (1972) Simple ion exchange equilibria (Prostye ionoobmennie ravnkvesia, in Russian). Nauka i Technika, MinskGoogle Scholar
  35. 35.
    Samoilov OY (1957) A new approach to the study of hydration of ions in aqueous solution. Discuss Faraday Soc 24:141–146CrossRefGoogle Scholar
  36. 36.
    Samoilov OY (1965) Structure of aqueous electrolyte solutions and the hydration of ions. Consultants Bureau, New YorkGoogle Scholar
  37. 37.
    Markus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370CrossRefGoogle Scholar
  38. 38.
    CRC (1990) In: Weast RC (ed) Handbook of chemistry and physics, CRC Press, Boca Raton, pp P. F–187Google Scholar
  39. 39.
    Dolar D (1974) Thermodynamic properties of polyelectrolyte solutions. In: Selengu E, Mandel M, Straus UP (eds) Polyelectrolytes. Reidel, Dordrecht/HollandGoogle Scholar
  40. 40.
    Soldano P, Larson QV, Myers CE (1955) The osmotic approach to ion-exchange equilibrium II. Cation exchangers. J Am Chem Soc 77:1339–1344CrossRefGoogle Scholar
  41. 41.
    Bonner OD, Rhett V (1953) Equilibrium studies of the solver-sodium-hydrogen system on Dowex 50. J Am Chem Soc 57:254–256Google Scholar
  42. 42.
    Hogfeldt E, Chiarizia R, Danesi PR et al (1981) Structure and ion exchange properties of dinonyl naphthalene sulfonic acids and its salts. Chem Scripta 18:13–43Google Scholar
  43. 43.
    Soldatov VS, Starobinets GL (1964) On thermodynamics of ion exchange on sulfonated copolymers of styrene and divinylbenzene. II. The effect of cross-linkage, ionic radii and temperature on the equilibria. Russ J Phys Chem (Zhurn Fiz Khim) 38:681–685Google Scholar
  44. 44.
    Eigen M (1964) Proton transfer acid–base catalysis, and enzymatic hydrolysis. Part I: elementary processes. Angew Chem Int Ed 3:1–19CrossRefGoogle Scholar
  45. 45.
    Chandra A, Tuckerman ME, Marx D (2007) Connecting salvation shall structure to proton transport kinetics in hydrogen-bonded networks via populations analysis. Phys Rev Lett 99:145901.1–145901.4CrossRefGoogle Scholar
  46. 46.
    Dey TJF, Schmitt UW, Voth GA (2000) The mechanism of hydrated proton transport in water. J Am Chem Soc 122:12027–12208CrossRefGoogle Scholar
  47. 47.
    Wu Y, Voth GA (2003) A computer simulation study of the hydrated proton in a synthetic proton channel. Biophys J 85:864–875CrossRefGoogle Scholar
  48. 48.
    Marx D, Tuckerman ME, Hutter J et al (1999) The nature of the hydrated excess proton in water. Nature (London) 397:601–604CrossRefGoogle Scholar
  49. 49.
    Glueckauff E, Kitt GP (1955) A theoretical treatment of cation exchangers III Hydrations of cations in polystyrene sulphonates. Proc R Soc A 228:322–341CrossRefGoogle Scholar
  50. 50.
    Krylova AA, Soldatov VS, Starobinets GL (1966) On thermodynamics of ion exchange on sulfonated copolymers of styrene and divinylbenzene. IX. Selectivity and hydration of bivalent ions. Rus J Phys Chem (Zhurn Fiz Khim) 40:1203–1206Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Physical Organic ChemistryBelarus National Academy of SciencesMinskRepublic of Belarus
  2. 2.Lublin University of TechnologyLublinPoland

Personalised recommendations