Network Simulation of the Electrical Response of Ion Exchange Membrane Systems

  • A. A. Moya


The steady-state, transient and small-signal ac responses of ion exchange membrane systems are studied by using the network simulation method. A network model for the Nernst-Planck and Poisson equations is used to describe the ionic transport processes through a cation-exchange membrane and the two diffusion boundary layers on both sides of the membrane. With this model and the electric circuit simulation programme PSpice, the steady-state, chronoamperometric, chronopotentiometric and small-signal ac responses are simulated. In this work, we analyse the influence of the fixed-charge concentration inside the membrane on (1) the steady-state current-voltage characteristic, (2) the ionic fluxes ratio describing the permselectivity of the membrane, (3) the chronoamperometric response, (4) the chronopotentiometric response and (5) the electrochemical impedance. Some of the results obtained for highly charged membranes can be compared with the analytical solutions in ideal membranes.


Membrane System Diffusion Boundary Layer Applied Electric Potential Negative Fixed Charge Chronoamperometric Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am indebted to Professor J. Horno for many helpful suggestions.


  1. 1.
    Xu T (2005) J Membr Sci 263:1CrossRefGoogle Scholar
  2. 2.
    Szymczyk A (ed) (2008) Surface electrical phenomena in membranes and microchannels. Transworld Research Network, TrivandrumGoogle Scholar
  3. 3.
    Helfferich F (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Lakshminarayanaiah N (1969) Transport phenomena in membranes. Academic, New YorkGoogle Scholar
  5. 5.
    Rubinstein I (1990) Electro-diffusion of ions. SIAM Studies in Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  6. 6.
    Bassignana IC, Reiss H (1983) J Phys Chem 87:136CrossRefGoogle Scholar
  7. 7.
    Selvey C, Reiss H (1987) J Membr Sci 30:75CrossRefGoogle Scholar
  8. 8.
    Manzanares JA, Murphy WD, Mafé S, Reiss H (1993) J Phys Chem 97:8524CrossRefGoogle Scholar
  9. 9.
    Sokalski T, Lingenfelter P, Lewenstam A (2003) J Phys Chem B 107:2443CrossRefGoogle Scholar
  10. 10.
    Volgin VM, Davydov AD (2005) J Membr Sci 259:110CrossRefGoogle Scholar
  11. 11.
    Morf WE, Pretsch E, De Rooij NF (2007) J Electroanal Chem 602:43CrossRefGoogle Scholar
  12. 12.
    Moya AA, Horno J (1999) J Phys Chem B 103:10791CrossRefGoogle Scholar
  13. 13.
    Moleón JA, Moya AA (2008) J Electroanal Chem 613:23CrossRefGoogle Scholar
  14. 14.
    Moleón JA, Moya AA (2009) J Electroanal Chem 633:306CrossRefGoogle Scholar
  15. 15.
    Moya AA, Moleón JA (2010) J Electroanal Chem 647:53CrossRefGoogle Scholar
  16. 16.
    Moya AA (2010) Electrochim Acta 55:2087CrossRefGoogle Scholar
  17. 17.
    Buck RP (1984) J Membr Sci 17:1CrossRefGoogle Scholar
  18. 18.
    Murphy WD, Manzanares JA, Mafé S, Reiss H (1992) J Phys Chem 96:9983CrossRefGoogle Scholar
  19. 19.
    Tuinenga PW (1992) SPICE: a guide to circuit simulation and analysis using PSpice. Prentice-Hall, Englewood CliffsGoogle Scholar
  20. 20.
    Rubinstein I, Shtilman L (1981) J Chem Soc Faraday Trans II 77:1595CrossRefGoogle Scholar
  21. 21.
    Nikonenko VV, Zabolotskii VI, Gnusin NP (1989) Sov Electrochem 25:262Google Scholar
  22. 22.
    Listovnichii AV (1989) Sov Electrochem 25:1479Google Scholar
  23. 23.
    Sistat P, Pourcelly G (1999) J Electroanal Chem 460:53CrossRefGoogle Scholar
  24. 24.
    Sokirko AV, Manzanares JA, Pellicer J (1994) J Colloid Interface Sci 168:32CrossRefGoogle Scholar
  25. 25.
    Karlin YuV, Kropotov VN (1995) Russ J Electrochem 31:472Google Scholar
  26. 26.
    Sistat P, Pourcelly G (1997) J Membr Sci 123:121CrossRefGoogle Scholar
  27. 27.
    Krol JJ, Wessling M, Strathmann H (1999) J Membr Sci 162:145CrossRefGoogle Scholar
  28. 28.
    Ibanez R, Stamatialis DF, Wessling M (2004) J Membr Sci 239:119CrossRefGoogle Scholar
  29. 29.
    Volodina E, Pismenkaya N, Nikonenko V, Larchet C, Pourcelly G (2005) J Colloid Interface Sci 285:247CrossRefGoogle Scholar
  30. 30.
    Lee XT (2008) J Colloid Interface Sci 325:215CrossRefGoogle Scholar
  31. 31.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley, New YorkCrossRefGoogle Scholar
  32. 32.
    Urtenov MA-Kh, Kirillova EV, Seidova NM, Nikonenko VV (2007) J Phys Chem B 11:14208CrossRefGoogle Scholar
  33. 33.
    Park J-S, Choi J-H, Yeon S-H, Moon S-H (2006) J Colloid Interface Sci 294:129CrossRefGoogle Scholar
  34. 34.
    Park J-S, Choi J-H, Woo J-J, Moon S-H (2006) J Colloid Interface Sci 300:655CrossRefGoogle Scholar
  35. 35.
    Sistat P, Kozmai A, Pismenskaya N, Larchet C, Pourcelly G, Nikonenko V (2008) Electrochim Acta 53:6380CrossRefGoogle Scholar
  36. 36.
    Franceschetti DR, Macdonald JR, Buck RP (1991) J Electrochem Soc 138:1368CrossRefGoogle Scholar
  37. 37.
    Freger V (2005) Electrochem Commun 7:957CrossRefGoogle Scholar
  38. 38.
    Diard J-P, Glandut N, Montella C, Sánchez J-Y (2005) J Electroanal Chem 578:247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de JaénJaénSpain

Personalised recommendations