Chelating Ion Exchangers: Theory and Applications

Chapter

Abstract

The lack of selectivity, sensitivity, and capacity of the conventional ion exchange resins particularly for trace heavy metal ions had led to the development of metal-ion-specific exchange resins known as chelating ion exchangers or chelating ion exchange resins. The chelating ion exchangers are the polymers covalently bonded to ligands forming complexes with metal ions through functional groups. The chelating ion exchangers consist essentially of two components – polymeric matrix and chelating ligands. A variety of polymeric matrices, namely, inorganic (silica) and organic – both natural and synthetic [polystyrene divinyl benzene (PS-DVB), polymethacrylate (PMA)] – have been employed for the synthesis of chelating exchangers. Most of the commercially available chelating exchangers are silica- or PS-DVB-based and have diverse applications. A large number of diversified chelating ligands may be employed for the synthesis of chelating exchangers, such as the carbamates, β-diketones, diamine, iminodiacetic acid and amino acids, aldoxime, aminophosphonic acids, various azo-triphenylmethane dyes, and 8-hydroxyl quinolinol. These chelating ligands are incorporated into a polymeric matrix by different methods. The chelation exchange mechanisms are found to be slower than ion exchange, and efficient separations are possible only by the choice of the correct chelating functional group. Furthermore, the chelating ligand should have a broad spectrum of chelating action and have no special selectivity for one or two metal ions. The structure, coordination chemistry, and applications of most commonly employed chelating ion exchangers have been discussed. Chelating ion exchangers containing iminodiacetic acid (IDA) chelating group have been the most studied for metal separations. The efficiency and versatility of another chelating exchanger containing the chelating ligand aminophosphonate have been addressed. The development of new chelating ion exchange materials with special chelating properties can provide better kinetics of interaction between metal ion and chelating groups, and better understanding of their coordination chemistry for surfaces can revolutionized the domain of chromatographic separations and analysis of trace metal ions particularly from complex matrices.

Keywords

Acid Functional Group Chelate Ligand Iminodiacetic Acid Macroporous Resin Methyl Phosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schmuckler G (1965) Chelating resins-their analytical properties and applications. Talanta 12:281–290CrossRefGoogle Scholar
  2. 2.
    Iseid SS, Kuehn CG, Lyon JM, Merrifield RB (1982) Specific peptide sequences for metal ion coordination. 1. Solid-phase synthesis of cyclo-(gly-his). J Am Chem Soc 104:2632–2634CrossRefGoogle Scholar
  3. 3.
    Inczedy J (1966) Analytical applications of ion exchangers. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Skogseid A (1947) Norway Patent 72,583; (1952) US Patent 2,592,350Google Scholar
  5. 5.
    Riley JP, Taylor D (1968) Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry. Anal Chim Acta 40:479–485CrossRefGoogle Scholar
  6. 6.
    Sahni SK, Reedijk J (1984) Coordination chemistry of chelating resins and ion exchangers. Coord Chem Rev 59:1–139CrossRefGoogle Scholar
  7. 7.
    Nesterenko PN, Jones P (1997) First isocratic separation of fourteen Lanthanides and Yttrium by high-performance chelation ion chromatography. Anal Commun 34:7CrossRefGoogle Scholar
  8. 8.
    Slebioda M, Wodecki Z, Kolodziejczyk AM, Nowicki W (1994) Chem Anal (Warsaw) 39:149Google Scholar
  9. 9.
    Watanesk S, Schilt AA (1986) Separation of some transition-metal ions on silica-immobilized 2-pyridinecarboxaldehyde phenylhydrazone. Talanta 33:895–899CrossRefGoogle Scholar
  10. 10.
    Simonzadeh N, Schilt AA (1988) Metal-ion chromatography on silica-immobilized 2-pyridinecarboxyaldehyde phenylhydrazone. Talanta 35:187CrossRefGoogle Scholar
  11. 11.
    Simonzadeh N, Schilt AA (1989) J Coord Chem 20:117CrossRefGoogle Scholar
  12. 12.
    Nesterenko PN, Smirnov IP, Brykina GD, Bolshova TA (1991) Vestnik Mosk Univ Khimia 32:358Google Scholar
  13. 13.
    Elefterov AI, Kolpachnikova MG, Nesterenko PN, Shpigun OA (1997) Ion-exchange properties of glutamic acid-bonded silica. J Chromatogr A 769:179–188CrossRefGoogle Scholar
  14. 14.
    Gregor HP, Taifer M, Citarel L, Becker EI (1952) Ind Eng Chem 44:2834CrossRefGoogle Scholar
  15. 15.
    Pearson GR (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  16. 16.
    Akelah A, Sherrington DC (1981) Application of functionalized polymers in organic synthesis. Chem Rev 81:557–587CrossRefGoogle Scholar
  17. 17.
    Nesterenko PN, Jones P (2007) Review: recent developments in the high-performance chelation ion chromatography of trace metals. J Sep Sci 30:1773–1793CrossRefGoogle Scholar
  18. 18.
    Okawara M, Komeda Y, Imoto E (1960) Chem High Polym (Jpn) 17:30Google Scholar
  19. 19.
    Loewenschuss H, Schmuckler G (1964) Chelating properties of the chelating ion exchanger Dowex A-l. Talanta 11:1399–1408CrossRefGoogle Scholar
  20. 20.
    Rosset R (1966) Bull Soc Chim Fr 59Google Scholar
  21. 21.
    Hirsh RF, Gancher E, Russo FR (1970) Macroreticular chelating ion-exchangers. Talanta 17:483–489CrossRefGoogle Scholar
  22. 22.
    Hering R (1967) Chelatbildende Ionenaustauscher. Akademie, BerlinGoogle Scholar
  23. 23.
    Bonn G, Reiffenstuhl S, Jandik P (1990) Ion chromatography of transition metals on an iminodiacetic acid bounded stationary phase. J Chromatogr 76:499–669Google Scholar
  24. 24.
    Bashir W, Paull B (2001) Ionic strength, pH and temperature effects upon selectivity for transition and heavy metal ions when using chelation ion chromatography with an iminodiacetic acid bonded silica gel column and simple inorganic eluents. J Chromatogr A 942:73–82Google Scholar
  25. 25.
    Nesterenko PN, Jones P (1998) Isocratic separation of lanthanides and yttrium by high-performance chelation ion chromatography on iminodiacetic acid bonded to silica. J Chromatogr A 804:223–231CrossRefGoogle Scholar
  26. 26.
    Becker NSC, Eldridge RJ (1993) Selective recovery of mercury(II) from industrial wastewaters I. Use of a chelating ion exchanger regenerated with brine. React Polym 21:5–14CrossRefGoogle Scholar
  27. 27.
    Lehto J, Vaaramaa K (1997) H+/Na+ exchange in an aminophosphonate-chelating resin. React Funct Polym 33:19–24CrossRefGoogle Scholar
  28. 28.
    Leinonen H, Lehto J, Makela A (1994) Purification of nickel and zinc from waste waters of metal-plating plants by ion exchange. React Polym 23:221–228CrossRefGoogle Scholar
  29. 29.
    Yebra-Biurrun MC, Bermejo-Barrera A, Bermejo-Barrera MP (1992) Synthesis and characterization of a poly (aminophosphonic acid) chelating resin. Anal Chim Acta 264:53–58CrossRefGoogle Scholar
  30. 30.
    Yebra-Biurrun MC, Bermejo-Barrera A, Bermejo-Barrera MP, Barciela-Alonso MC (1995) Determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration. Anal Chim Acta 303:341–345CrossRefGoogle Scholar
  31. 31.
    Nesterenko PN, Zhukova OS, Shpigun OA, Jones P (1998) Synthesis and ion-exchange properties of silica chemically modified with aminophosphonic acid. J Chromatogr A 813:47–53CrossRefGoogle Scholar
  32. 32.
    Nesterenko PN, Shaw MJ, Hill SJ, Jones P (1999) Aminophosphonate-functionalized silica: a versatile chromatographic stationary phase for high-performance chelation ion chromatography. Microchem J 62:58–69CrossRefGoogle Scholar
  33. 33.
    Mohan M, Abbott E (1978) J Coord Chem 8:175CrossRefGoogle Scholar
  34. 34.
    Lehto J, Vaaramaa K, Leinonen H (1997) Ion exchange of zinc on an aminophosphonate-chelating resin. React Funct Polym 33:13–18CrossRefGoogle Scholar
  35. 35.
    Deepatana A, Valix M (2006) Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. J Hazard Mater B 137:925–933CrossRefGoogle Scholar
  36. 36.
    Koivula R, Lehto J, Pajo L, Gale T, Leinonen H (2000) Purification of metal plating rinse waters with chelating ion exchangers. Hydrometallurgy 56:93–108CrossRefGoogle Scholar
  37. 37.
    Dingman J Jr, Siggia S, Barton C, Hiscock KB (1972) Concentration and separation of trace metal cations by complexation on polyamine-polyurea resins. Anal Chem 44:1351–1357CrossRefGoogle Scholar
  38. 38.
    Kantipuly G, Katragadda S, Chow A, Gesser HD (1990) Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 37:491–498CrossRefGoogle Scholar
  39. 39.
    Mathew B, Rajasekharan Pillai VN (1994) N, N′-2-methylene bisacrylamide-crosslinked polyacrylamides as supports for dithiocarbamate ligands formetalion complexation. Polym Int 28:201–208CrossRefGoogle Scholar
  40. 40.
    Lezzi A, Cobianco S (1994) Chelating resins supporting dithiocarbamate and methylthiourea groups in adsorption of heavy metal ions. J Appl Polym Sci 54:889–897CrossRefGoogle Scholar
  41. 41.
    Roy PK, Rawat AS, Rai PK (2003) Synthesis, characterisation and evaluation of poly-dithiocarbamate resin supported on macroreticular styrene–divinylbenzenecopolymer for the removal of trace and heavy metal ions. Talanta 59:239–246CrossRefGoogle Scholar
  42. 42.
    Jing X, Liu F, Yang X, Ling P, Li L, Long C, Li A (2009) Adsorption performances and mechanisms of the newly synthesized N, N′-di(carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J Hazard Mater 167:589–596CrossRefGoogle Scholar
  43. 43.
    Slovak Z, Slovakova S, SmIz M (1976) Analytische eigenschaften von hydrophilen glykolmethacrylat-gelen mit chemisch gebundener salicylsäure. Anal Chim Acta 87:149CrossRefGoogle Scholar
  44. 44.
    Hanclkova L, Bartusek M (1969) Collect Czech Chem Comm 34:3722Google Scholar
  45. 45.
    Vernon F, Eccles H (1974) Chelating ion-exchangers containing salicylic acid. Anal Chem Acta 72:331–338CrossRefGoogle Scholar
  46. 46.
    Degeiso RC, Donaruma LG, Tomic EA (1962) Polymeric ligands. I. Some salicylic acid derivatives. J Org Chem 27:1424CrossRefGoogle Scholar
  47. 47.
    Matus P, Kubova J, Steresko V (2003) Utilization of chelating ion exchange for aluminium. Speciation Chem Pap 57:176–178Google Scholar
  48. 48.
    Comaz JP, Hutschneker K, Deuel H (1957) Helv Chim Acta 40:2015CrossRefGoogle Scholar
  49. 49.
    Vrancken M, Smets G (1954) J Polym Sci 14:521CrossRefGoogle Scholar
  50. 50.
    Petrie G, Locke D, Meloan CE (1965) Hydroxamic acid chelate ion exchange resin [2]. Anal Chem 37:919–920CrossRefGoogle Scholar
  51. 51.
    Vernon F, Eccles H (1976) Chelating ion-exchangers containing n-substituted hydroxylamine functional groups: part IV. Column separations on a hydroxamic acid resin. Anal Chim Acta 83:187–193CrossRefGoogle Scholar
  52. 52.
    Vernon F, Zin WMd (1981) Chelating ion-exchangers containing n-substituted hydroxylamine functional groups. Part 6. Sorption and separation of gold and silver by a polyhydroxamic acid. Anal Chim Acta 123:309–313CrossRefGoogle Scholar
  53. 53.
    Vernon F, Eccles H (1975) Chelating ion-exchangers containing n-substituted hydroxylamine functional groups: part II. N-acylphenylhydroxylamines original research article. Anal Chim Acta 79:229–236CrossRefGoogle Scholar
  54. 54.
    Hackett DS, Siggia S (1977) In: Ewing G (ed) Environmental analysis. Academic, New York, p 2Google Scholar
  55. 55.
    Vernon F, Kyffin TW (1977) Chelating ion-exchangers containing n-substituted hydroxylamine functional groups. Part V. Iron, copper, and uranium separations on Duolite CS-346 resin. Anal Chim Acta 94:317–322CrossRefGoogle Scholar
  56. 56.
    Chanda M, Rempel GL (1989) Polybenzimidazole resin-based new chelating agents. Uranyl and ferric ion selectivity of resins with anchored dimethylglyoxime. React Polym 11:165–176CrossRefGoogle Scholar
  57. 57.
    Parrish JR (1955) Chem Ind 386Google Scholar
  58. 58.
    Slovak Z, Slovakova S (1978) Use of hydrophilic glycolmethacrylate gels with bound 8-hydroxyquinoline in trace analysis – Part II. Batch sorption methods [Verwendung von hydrophilen Glykolmethacrylat-Gelen mit chemisch gebundenem 8-Hydroxychinolin bei Spurenanalysen – II. Statische sorptionen]. Fresenius Z Anal Chem 292:213–215CrossRefGoogle Scholar
  59. 59.
    Slovak Z, Toman J (1976) Use of hydrophilic glycolmethacrylate gels with bound 8-hydroxyquinoline in trace analysis|[Verwendung von hydrophilen Glykolmethacrylat-Gelen mit chemisch gebundenem 8-Hydroxychinolin bei Spurenanalysen]. Fresenius Z Anal Chem 278:115–120CrossRefGoogle Scholar
  60. 60.
    Sturgeon RE, Berman SS, Willie SN, Desauiniers JAH (1981) Preconcentration of trace elements from seawater with silica-immobilized 8-hydroxyquinoline. Anal Chem 53:2337–2340CrossRefGoogle Scholar
  61. 61.
    An B, Fu Z, Xiong Z, Zhao D, SenGupta AK (2010) Synthesis and characterization of a new class of polymeric ligand exchangers for selective removal of arsenate from drinking water. React Funct Polym 70:497–507CrossRefGoogle Scholar
  62. 62.
    Moyers EM, Fritz JS (1977) Preparation and analytical applications of a propylenediaminetetraacetic acid resin. Anal Chem 49:418–423CrossRefGoogle Scholar
  63. 63.
    King JN, Fritz JS (1978) Separation of metal ions using an aromatic o-hydroxy-oxime resin. J Chromatogr A 153:507–516CrossRefGoogle Scholar
  64. 64.
    Jonas PMM, Eve DJ, Parrish JR (1989) Preparation, characterization and performance of surface-loaded chelating resins for ion-chromatography. Talanta 36:1021–1026CrossRefGoogle Scholar
  65. 65.
    Phillips RJ, Fritz JS (1980) Synthesis and analytical properties of an n-phenyl-hydroxamic acid resin. Anal Chim Acta 121:225–232CrossRefGoogle Scholar
  66. 66.
    Suzuki TM, Yokoyama T (1984) Preparation and complexation properties of polystyrene resins containing diethylenetriamine derivatives. Polyhedron 3:939–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistrySant Longowal Institute of Engineering and Technology, (Deemed to be University)LongowalIndia

Personalised recommendations