Energy-Aware Surveillance Camera


In this chapter, we introduce an application example of a wireless surveillance camera (WSC) consisting of image sensor, event detector, video encoder, flash memory, wireless transmitter, and battery. The battery- and flash-constrained WSC records images when significant events, such as suspicious pedestrians or vehicles, are detected, based on a hierarchical event detection method to avoid wasting energy on insignificant events. In an energy-aware sense, the recorded images are stored in non-volatile (flash) memory or transmitted to the base station according to the urgency of the event. Balancing the usage of all resources including battery and flash is critical in prolonging the lifetime of a WSC, because a shortage of either battery charge or flash capacity could lead to a complete loss of events, or a significant loss of quality in the recorded image of events. We assume that the resources of the WSC, i.e., the battery and flash, are refreshed every system maintenance period (SMP). The proposed method controls the bit rate of encoded videos and sampling rate, e.g., resolution and frame rate, to prolong the lifetime of the WSC until the next SMP. Experimental results show that the proposed method prolongs the lifetime of the WSC by up to 88.41% compared with an existing bit-rate allocation method that does not consider resource usage balancing.


  1. 1.
    Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. IEE Proc., Vis. Image Signal Process. 152(2) (2005) Google Scholar
  2. 2.
    Talukder, A., et al.: Optimal sensor scheduling and power management in sensor networks. In: Proc. SPIE (2005) Google Scholar
  3. 3.
    Talukder, A., et al.: Autonomous adaptive resource management in sensor network systems for environmental monitoring. In: Proc. IEEE Aerospace Conference (2008) Google Scholar
  4. 4.
    Hengstler, S., et al.: MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: Proc. IPSN (2007) Google Scholar
  5. 5.
    He, T., et al.: Energy-efficient surveillance system using wireless sensor networks. In: Proc. MobiSys (2004) Google Scholar
  6. 6.
    Feng, W., et al.: Panoptes: scalable low-power video sensor networking technologies. ACM Trans. Multimed. Comput. Commun. Appl. 1(2) (2005) Google Scholar
  7. 7.
    Hampapur, A., et al.: Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Process. Mag. 22(2) (2005) Google Scholar
  8. 8.
    Vanam, R., et al.: Distortion-complexity optimization of the H.264/MPEG-4 AVC encoder using GBFOS algorithm. In: Proc. IEEE Data Compression Conference (2007) Google Scholar
  9. 9.
    He, Z., et al.: Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Trans. Circuits Syst. Video Technol. 15(5) (2005) Google Scholar
  10. 10.
    Zhang, Q., et al.: Power-minimized bit allocation for video communication over wireless channels. IEEE Trans. Circuits Syst. Video Technol. 12(6) (2002) Google Scholar
  11. 11.
    Liang, Y., et al.: Joint power and distortion control in video coding. In: Proc. SPIE (2005) Google Scholar
  12. 12.
    He, Z., Wu, D.: Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 18(5) (2006) Google Scholar
  13. 13.
    He, Z., et al.: Energy minimization of portable video communication devices based on power-rate-distortion optimization. IEEE Trans. Circuits Syst. Video Technol. 18(5) (2008) Google Scholar
  14. 14.
    Su, L., et al.: Complexity-constrained, H. 264 video encoding. IEEE Trans. Circuits Syst. Video Technol. 19(4) (2009) Google Scholar
  15. 15.
    Open Source Computer Vision Library (OpenCV).
  16. 16.
    Kim, C., Hwang, J.: Video object extraction for object-oriented applications. J. VLSI Signal Process. 29, 7–21 (2001) CrossRefGoogle Scholar
  17. 17.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’97, p. 193 (1997) CrossRefGoogle Scholar
  18. 18.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. IEEE 6th International Conference on Computer Vision, p. 555 (1998) Google Scholar
  19. 19.
    Kim, J.: Analysis and architecture design of power-aware H.264/AVC encoder using power-rate-distortion optimization. Ph.D. dissertation, Korea Advanced Institute of Science and Technology (KAIST) (2010) Google Scholar
  20. 20.
    Kamaci, N., Altunbasak, Y., Mersereau, R.M.: Frame bit allocation for the H.264/AVC video coder via Cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8) (2005) Google Scholar
  21. 21.
    Chouhan, S., et al.: Ultra-low power data storage for sensor network. In: Proc. IPSN (2006) Google Scholar
  22. 22.
    Mathur, G., et al.: A framework for energy-consumption-based design space exploration for wireless sensor nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(7) (2009) Google Scholar
  23. 23.
    Na, S., Kim, G., Kyung, C.-M.: Lifetime maximization of video blackbox surveillance camera. In: Proc. of IEEE International Conference of Multimedia and Expo (2011) Google Scholar
  24. 24.
    Na, S., Kim, J., Kim, J., Kim, G., Kyung, C.-M.: Design of energy-aware video codec-based system. In: Proc. of IEEE International Conference on Green Circuits and Systems, ICGCS, pp. 201–206 (2010) CrossRefGoogle Scholar
  25. 25.
    Lu, X., Erkip, E., Wang, Y., Goodman, D.: Power efficient multimedia communication over wireless channels. IEEE J. Sel. Areas Commun. 21(10), 1738–1751 (2003) CrossRefGoogle Scholar
  26. 26.
    Performance evaluation of surveillance systems.

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Samsung ElectronicsSeoulRepublic of Korea
  2. 2.KAISTDaejeonRepublic of Korea

Personalised recommendations