Advertisement

Photogrammetry: Geometric Data from Imagery

  • Mathias Lemmens
Chapter
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 5)

Abstract

Practitioners who wish to construct and maintain an urban, local or national geographic information system (GIS) or Land Information System (LIS) face the difficult and complex problem of data capture. Images have for a long time been major information sources for topographic mapping of large areas and creating base maps. Taking images is the fastest and most reliable way to capture reality.

Keywords

Digital Elevation Model Unman Aerial Vehicle Inertial Navigation System Aerial Image Oblique Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackermann F (1981) Block adjustment with additional parameters. Photogrammetria 36(6): 217–227CrossRefGoogle Scholar
  2. Ackermann F (1983) High precision digital image correlation. Proceedings 39th photogrammetric week, Institut für Photogrammetrie, Stuttgart, Heft 9, pp 231–243Google Scholar
  3. Ackermann F (1992) Kinematic GPS control for photogrammetry. Photogramm Rec 14(80): 261–276CrossRefGoogle Scholar
  4. American Society of Photogrammetry (2004) Manual of photogrammetry, 5th edn. American Society of Photogrammetry. Bethesda, Maryland, USGoogle Scholar
  5. Atkinson KB (ed) (2003) Close range photogrammetry and machine vision. Whittless Pub, Dunbeath, Caithness, Scotland, UKGoogle Scholar
  6. Eisenbeiss H (2009) UAV photogrammetry. PhD thesis, ETH ZurichGoogle Scholar
  7. Foerstner W (1986) A feature based correspondence algorithm for image matching. Int Arch Photogramm Remote Sens 26(part B3) Rovaniemi.Google Scholar
  8. Gillispie C (1983) The Montgolfier brothers, and the invention of aviation. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  9. Gruen A, Huang TS (eds) (2001) Calibration and orientation of cameras in computer vision. Springer, BerlinGoogle Scholar
  10. Grün A (1985) Adaptive least squares correlation: a powerful image matching technique. South Afr J Photogramm Remote Sens Cartogr 14(3):175–187Google Scholar
  11. Hannah MJ (1989) A system for digital stereo image matching. Photogramm Eng Remote Sens 55(12):1765–1770Google Scholar
  12. Heipke C (1996) Overview of image matching techniques. In: Kölbl O (ed) OEEPE workshop on the application of digital photogrammetric workstations. OEEPE Official Publication No. 33, pp 173–189Google Scholar
  13. Jacobsen K (2001) Direct georeferencing. Photogramm Eng Remote Sens 7(12):1321–1332Google Scholar
  14. Konecny G (2003) Geoinformation. Taylor & Francis, LondonCrossRefGoogle Scholar
  15. Kraus K (2007) Photogrammetry, geometry from images and laser scans, 2nd edn. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  16. Lemmens MJPM (1988) A survey on stereo matching techniques. Int Arch Photogramm Remote Sens 27(part B8):V11–V23Google Scholar
  17. Lemmens M (2005) Digital photogrammetric workstations. GIM Int 19(5):41–45Google Scholar
  18. Lemmens M (2006) Photogrammetry out of the dark room. GIM Int 20(6):7–9Google Scholar
  19. Lemmens M (2007a) COWI Consultation: subsidiary Kampsax flourishes. GIM Int 21(11):36–39Google Scholar
  20. Lemmens M (2007b) Digital photogrammetric workstations. GIM Int 21(12):22–25Google Scholar
  21. Lemmens M (2008a) Mapping the Maldives. GIM Int 22(4):11Google Scholar
  22. Lemmens M (2008b) Digital aerial cameras. GIM Int 22(4):18–25Google Scholar
  23. Lemmens M (2008c) Digital aerial cameras: system configurations and sensor architectures. Prof Surveyor 28(5):66–72Google Scholar
  24. Lemmens M (2009a) Digital photogrammetric workstations. GIM Int 23(12):32–35Google Scholar
  25. Lemmens M (2009b) Layman’s photogrammetry. GIM Int 23(12):57Google Scholar
  26. Lemmens M (2011a) Digital photogrammetric workstations. GIM Int 25(12): in preparationGoogle Scholar
  27. Lemmens M (2011b) Digital aerial cameras. GIM Int 25(4):35–42Google Scholar
  28. Lemmens M, Lemmen C (2007) Pictometry: long-term impact on GI market. GIM Int 21(4): 7–11Google Scholar
  29. Lemmens M, Lemmen C, Wubbe M (2007) Pictometry: potentials for land administration. 6th FIG regional conference, San José, Costa Rica, 12–15 Nov 2007Google Scholar
  30. Linder W (2006) Digital photogrammetry: a practical course. Springer, Berlin, Heidelberg, New York. ISBN 3-540-29152-0Google Scholar
  31. Luhmann Th, Robson S, Kyle S, Harley I (2006) Close range photogrammetry, principles, methods and applications. Whittles Publishing, Dunbeath, Caithness, 510 p. ISBN: 1-870325-50-8Google Scholar
  32. Mikhail EM, Bethel JS, McGlone JC (2001) Introduction to modern photogrammetry. Wiley, New York, ChichesterGoogle Scholar
  33. Milanlak A, Majdabadi MGh (2005) Optimal GCPs with onboard GPS: BLOCK adjustment for photogrammetric production of map of Iran. GIM Int 19(9):46–47Google Scholar
  34. Miller SB, Seymour RH (1995) Uuno Vilho Helava contributes to photogrammetry in the United States. ISPRS J Photogramm Remote Sens 50(6):19–24CrossRefGoogle Scholar
  35. Pertl A (1985) Digital image correlation with an analytical plotter. Photogrammetria 40(1):9–19CrossRefGoogle Scholar
  36. Raghu Venkataraman V, Srinivas P, Rao J (2008) Aerial survey of the Maldives: total 1:25,000 Topographic Map Cover. GIM Int 22(8):17–19Google Scholar
  37. Read RE, Graham RW (2000) Manual of aerial survey. Whittles Publishing, Dunbeath, Caithness, Scotland, UK, 408 p. ISBN 1-870325-62-1, 0-8493-1600-6Google Scholar
  38. Schenk T (1999) Digital photogrammetry, vol 1. Terra Science, Laurelville, OHGoogle Scholar
  39. Thomson MM, Gruner H (1980) Foundations of photogrammetry, chapter 1. In: Manual of photogrammetry. American Society of Photogrammetry, Falls Church, VA, USAGoogle Scholar
  40. Torlegård K (1988) Transference of methods from analytical to digital photogrammetry. Photogrammetria 42(5–6):197–208CrossRefGoogle Scholar
  41. Vosselman G (1992) Relational matching. Lecture notes in computer science, vol 628. Springer, BerlinGoogle Scholar
  42. Whitehead K (2010) Unmanned aerial vehicles for glaciological studies: airborne survey of Fountain Glacier’s Terminus region, GIM Int 24(10):26–29Google Scholar
  43. Wolf PR, Dewitt BA (2000) Elements of photogrammetry with applications in GIS, 3rd edn. McGraw-Hill, New York, NY. ISBN 0-07-292454-3Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations