Gravitational Wave Astronomy

Part of the Integrated Science & Technology Program book series (ISTP, volume 1)


Spacetime is a dynamic and elastic entity both influencing and influenced by the distribution of mass and energy that it contains. As a consequence the accelerated motion of mass and energy can generate ripples or gravitational waves in the fabric of spacetime propagating at the speed of light. Those ripples encode unique information about the source, whatever it is a rapidly rotating neutron star, a binary black-hole system, a supernova or a rapidly changing gravitational field. Today, those ripples could be detected for the first time by instruments monitoring displacements on a scale one million times smaller than a single atom. The ongoing research on gravitational waves will improve our ability to detect and extract unique information from the observed waveforms, test fundamental equations of general relativity, and design increasingly sensitive detectors. The direct detection of gravitational waves is now in sight. It will constitute one of the major scientific discoveries of the next decade.


Gravitational waves Black hole physics 



The author acknowledges support from NSF Grant PHY-0903631 and NASA grant NNX09AI81G. The author thanks Walter Jacob for suggestions which helped to improve the prose of the manuscript.


  1. 1.
    J. Abadie et al., All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D81, 102001 (2010)ADSGoogle Scholar
  2. 2.
    J. Abadie et al., First search for gravitational waves from the youngest known neutron star. Astrophys. J. 722, 1504–1513 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    B. Abbott et al., Beating the spin-down limit on gravitational wave emission from the Crab pulsar. Astrophys. J. 683, L45–L50 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    B. Abbott et al., Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J. 681, 1419–1428 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    B. Abbott et al., Search for Gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Phys. Rev. D77, 062004 (2008)ADSGoogle Scholar
  6. 6.
    B. Abbott et al., Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    B.P. Abbott et al., An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    B.P. Abbott et al., First LIGO search for gravitational wave bursts from cosmic (super)strings. Phys. Rev. D80, 062002 (2009)MathSciNetADSGoogle Scholar
  9. 9.
    P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan, A.M. Sintes, J.T. Whelan, B. Brügmann, P. Diener, N. Dorband, J. Gonzalez, M. Hannam, S. Husa, D. Pollney, L. Rezzolla, L. Santamaría, U. Sperhake, J. Thornburg, Template bank for gravitational waveforms from coalescing binary black holes: nonspinning binaries. Phys. Rev. D 77(10), 104017 (2008)Google Scholar
  10. 10.
    O. Arcizet et al., Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    L. Baiotti, I. Hawke, L. Rezzolla, On the gravitational radiation from the collapse of neutron stars to rotating black holes. Class. Quant. Grav. 24, S187–S206 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    J. Baker, B. Brügmann, M. Campanelli, C.O. Lousto, R. Takahashi, Plunge waveforms from inspiralling binary black holes. Phys. Rev. Lett. 87(12), 121103 (2001)Google Scholar
  13. 13.
    J. Baker, M. Campanelli, C.O. Lousto, The Lazarus project: a pragmatic approach to binary black hole evolutions. Phys. Rev. D 65, 044001 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J.G. Baker, J. Centrella, D.I. Choi, M. Koppitz, J. van Meter, Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96(11), 111102 (2006)Google Scholar
  15. 15.
    J.G. Baker, M. Campanelli, F. Pretorius, Y. Zlochower, Comparisons of binary black hole merger waveforms. Class. Quantum Grav. 24, S25–S31 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    E. Barausse, A. Buonanno, An improved effective-one-body Hamiltonian for spinning black-hole binaries. Phys. Rev. D81, 084024 (2010)ADSGoogle Scholar
  17. 17.
    L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Rel. 9(4) (2006)Google Scholar
  18. 18.
    R.D. Blandford, R.L. Znajek, Electromagnetic extractions of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)ADSGoogle Scholar
  19. 19.
    L.A. Boyle, A. Buonanno, Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe. Phys. Rev. D78, 043531 (2008)ADSGoogle Scholar
  20. 20.
    M. Boyle, D.A. Brown, L.E. Kidder, A.H. Mroué, H.P. Pfeiffer, M.A. Scheel, G.B. Cook, S.A. Teukolsky, High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D 76, 124038 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    M. Boyle, A. Buonanno, L.E. Kidder, A.H. Mroué, Y. Pan, H.P. Pfeiffer, M.A. Scheel, High-accuracy numerical simulation of black-hole binaries: computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants. Phys. Rev. D 78(12), 104020 (2008)Google Scholar
  22. 22.
    P.R. Brady, T. Creighton, C. Cutler, B.F. Schutz, Searching for periodic sources with LIGO. Phys. Rev. D57, 2101–2116 (1998)ADSGoogle Scholar
  23. 23.
    V.B. Braginsky, F.Y. Khalili, Gravitational wave antenna with QND speed meter. Phys. Lett. A147, 251–256 (1990)ADSGoogle Scholar
  24. 24.
    V.B. Braginsky, M.L. Gorodetsky, F.Y. Khalili, Optical bars in gravitational wave antennas. Phys. Lett. A232, 340–348 (1997)ADSGoogle Scholar
  25. 25.
    A. Buonanno, Y. Chen, Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys. Rev. D65, 042001 (2002)ADSGoogle Scholar
  26. 26.
    A. Buonanno, Y.B. Chen, Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors. Phys. Rev. D64, 042006 (2001)ADSGoogle Scholar
  27. 27.
    A. Buonanno, Y.B. Chen, Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys. Rev. D69, 102004 (2004)ADSGoogle Scholar
  28. 28.
    A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59(8), 084006 (1999)MathSciNetGoogle Scholar
  29. 29.
    A. Buonanno, T. Damour, Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62(6), 064015 (2000)Google Scholar
  30. 30.
    A. Buonanno, G. Sigl, G.G. Raffelt, H.T. Janka, E. Muller, Stochastic gravitational wave background from cosmological supernovae. Phys. Rev. D72, 084001 (2005)ADSGoogle Scholar
  31. 31.
    A. Buonanno, Y. Chen, T. Damour, Transition from inspiral to plunge in precessing binaries of spinning black holes. Phys. Rev. D 74(10), 104005 (2006)MathSciNetGoogle Scholar
  32. 32.
    A. Buonanno, G.B. Cook, F. Pretorius, Inspiral, merger, and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75(12), 124018 (2007)Google Scholar
  33. 33.
    A. Buonanno, Y. Pan, J.G. Baker, J. Centrella, B.J. Kelly, S.T. McWilliams, J.R. van Meter, Approaching faithful templates for non-spinning binary black holes using the effective-one-body approach. Phys. Rev. D 76, 104049 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    A. Buonanno, Y. Pan, H.P. Pfeiffer, M.A. Scheel, L.T. Buchman, L.E. Kidder, Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal- mass black holes. Phys. Rev. D 79, 124028 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96(11), 111101 (2006)Google Scholar
  36. 36.
    M. Campanelli, C.O. Lousto, Y. Zlochower, D. Merritt, Large merger recoils and spin flips from generic black hole binaries. Astrophys. J. Lett. 659(1), L5–L8 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    M. Campanelli, C.O. Lousto, Y. Zlochower, D. Merritt, Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007)CrossRefGoogle Scholar
  38. 38.
    C.M. Caves, Quantum mechanical noise in an interferometer. Phys. Rev. D23, 1693–1708 (1981)ADSGoogle Scholar
  39. 39.
    C.M. Caves, B.L. Schumaker, New formalism for two-photon quantum optics. 1. Quadrature phases and squeezed states. Phys. Rev. A31, 3068–3092 (1985)Google Scholar
  40. 40.
    C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)ADSGoogle Scholar
  41. 41.
    Y.b. Chen, Sagnac interferometer as a speed-meter-type, quantum- nondemolition gravitational-wave detector. Phys. Rev. D67, 122004 (2003)Google Scholar
  42. 42.
    D.F. Chernoff, L.S. Finn, Gravitational radiation, inspiraling binaries, and cosmology. Astrophys. J. 411, L5–L8 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    E.J. Copeland, R.C. Myers, J. Polchinski, Cosmic F- and D-strings. J. High Energy Phys. 06, 013 (2004)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    T. Corbitt et al., A squeezed state source using radiation pressure induced rigidity. Phys. Rev. A 73, 023801 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    T. Corbitt et al., An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    T. Corbitt et al., Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)Google Scholar
  47. 47.
    T. Damour, Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64(12), 124013 (2001)MathSciNetGoogle Scholar
  48. 48.
    T. Damour, A. Nagar, Comparing effective-one-body gravitational waveforms to accurate numerical data. Phys. Rev. D 77(2), 024043 (2008)Google Scholar
  49. 49.
    T. Damour, A. Nagar, Improved analytical description of inspiralling and coalescing black-hole binaries. Phys. Rev. D 79, 081503 (2009)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    T. Damour, A. Vilenkin, Gravitational radiation from cosmic (super)strings: bursts, stochastic background, and observational windows. Phys. Rev. D71, 063510 (2005)ADSGoogle Scholar
  51. 51.
    T. Damour, P. Jaranowski, G. Schäfer, Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation. Phys. Rev. D 62(8), 084011 (2000)Google Scholar
  52. 52.
    T. Damour, P. Jaranowski, G. Schäfer, Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling. Phys. Rev. D 78, 024009 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    T. Damour, A. Nagar, E.N. Dorband, D. Pollney, L. Rezzolla, Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries. Phys. Rev. D 77(8), 084017 (2008)Google Scholar
  54. 54.
    T. Damour, A. Nagar, M. Hannam, S. Husa, B. Brügmann, Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Phys. Rev. D 78, 044039 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    T. Damour, B.R. Iyer, A. Nagar, Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79, 064004 (2009)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    A. Einstein, Sitzber. Preuss. Akad. Wiss. 688 (1916)Google Scholar
  57. 57.
    A. Einstein, Sitzber. Preuss. Akad. Wiss. 154 (1918)Google Scholar
  58. 58.
    Z.B. Etienne, Y.T. Liu, S.L. Shapiro, T.W. Baumgarte, Relativistic simulations of black hole-neutron star mergers: effects of black-hole spin. Phys. Rev. D79, 044024 (2009)ADSGoogle Scholar
  59. 59.
    F. Foucart, M.D. Duez, L.E. Kidder, S.A. Teukolsky, Black hole-neutron star mergers: effects of the orientation of the black hole spin. Phys. Rev. D 83, 024005 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    S. Gigan et al., Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    J.A. Gonzalez, M.D. Hannam, U. Sperhake, B. Brügmann, S. Husa, Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Phys. Rev. Lett. 98, 231101 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    J.A. Gonzalez, U. Sperhake, B. Brügmann, M. Hannam, S. Husa, Maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    L.P. Grishchuk, Amplification of gravitational waves in an istropic universe. Sov. Phys. JETP 40, 409–415 (1975)ADSGoogle Scholar
  64. 64.
    J. Harms et al., Squeezed-input, optical-spring, signal-recycled gravitational wave detectors. Phys. Rev. D68, 042001 (2003)ADSGoogle Scholar
  65. 65.
    R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)ADSCrossRefGoogle Scholar
  66. 66.
    M. Kamionkowski, A. Kosowsky, M.S. Turner, Gravitational radiation from first order phase transitions. Phys. Rev. D49, 2837–2851 (1994)ADSGoogle Scholar
  67. 67.
    F. Khalili, Frequency dependent rigidity in large scale interferometric gravitational wave detectors. Phys. Lett. A288, 251–256 (2001)ADSGoogle Scholar
  68. 68.
    F.Y. Khalili, V.I. Lazebny, S.P. Vyatchanin, Sub-SQL sensitivity via optical rigidity in advanced LIGO interferometer with optical losses. Phys. Rev. D73, 062002 (2006)ADSGoogle Scholar
  69. 69.
    F.Y. Khalili, H.X. Miao, Y.B. Chen, Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input. Phys. Rev. D80, 042006 (2009)ADSGoogle Scholar
  70. 70.
    F. Khalili et al., Preparing a mechanical oscillator in non-Gaussian quantum states. Phys. Rev. Lett. 105(7), 070403 (2010)Google Scholar
  71. 71.
    S.Y. Khlebnikov, I.I. Tkachev, Relic gravitational waves produced after preheating. Phys. Rev. D56, 653–660 (1997)ADSGoogle Scholar
  72. 72.
    H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational wave interferometers into QND interferometers by modifying their input and/or output optics. Phys. Rev. D65, 022002 (2002)ADSGoogle Scholar
  73. 73.
    A. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    D. Markovic, On the possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. Phys. Rev. D48, 4738–4756 (1993)ADSGoogle Scholar
  75. 75.
    K. Mckenzie, D.A. Shaddock, D.E. McClelland, B.C. Buchler, P.K. Lam, Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection. Phys. Rev. Lett. 88, 231102 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    C. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)Google Scholar
  77. 77.
    H. Miao et al., Probing macroscopic quantum states with a sub-Heisenberg accuracy. Phys. Rev. A81, 012114 (2010)ADSGoogle Scholar
  78. 78.
    O. Miyakawa et al., Measurement of optical response of a detuned resonant sideband extraction interferometer. Phys. Rev. D74, 022001 (2006)ADSGoogle Scholar
  79. 79.
    E. Mueller, M. Rampp, R. Buras, H.T. Janka, D.H. Shoemaker, Towards gravitational wave signals from realistic core collapse supernova models. Astrophys. J. 603, 221–230 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    H. Mueller-Ebhardt et al., Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    H. Mueller-Ebhardt et al., Quantum state preparation and macroscopic entanglement in gravitational-wave detectors. Phys. Rev. A80, 043802 (2009)ADSGoogle Scholar
  82. 82.
    A. Naik et al., Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    C.D. Ott, Probing the core-collapse supernova mechanism with gravitational waves. Class. Quant. Grav. 26, 204015 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    C. Palenzuela, L. Lehner, S.L. Liebling, Dual jets from binary black holes. Science 329, 927 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    C. Palenzuela, L. Lehner, S. Yoshida, Understanding possible electromagnetic counterparts to loud gravitational wave events: binary black hole effects on electromagnetic fields. Phys. Rev. D81, 084007 (2010)ADSGoogle Scholar
  86. 86.
    Y. Pan, A. Buonanno, J.G. Baker, J. Centrella, B.J. Kelly, S.T. McWilliams, F. Pretorius, J.R. van Meter, Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case. Phys. Rev. D 77(2), 024014 (2008)ADSGoogle Scholar
  87. 87.
    Y. Pan, A. Buonanno, L. Buchman, T. Chu, L. Kidder, H. Pfeiffer, M. Scheel, Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes. Phys. Rev. D81, 084041 (2010)ADSGoogle Scholar
  88. 88.
    Y. Pan, A. Buonanno, R. Fujita, E. Racine, H. Tagoshi, Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries. Phys. Rev. D83(6), 064003 (2011)Google Scholar
  89. 89.
    F. Pretorius, Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95(12), 121101 (2005)MathSciNetGoogle Scholar
  90. 90.
    P. Purdue, Y.B. Chen, Practical speed meter designs for QND gravitational-wave interferometers. Phys. Rev. D66, 122004 (2002)ADSGoogle Scholar
  91. 91.
    E. Racine, A. Buonanno, L.E. Kidder, Recoil velocity at 2PN order for spinning black hole binaries. Phys. Rev. D 80, 044010 (2009)ADSCrossRefGoogle Scholar
  92. 92.
    H. Rehbein et al., Double optical spring enhancement for gravitational wave detectors. Phys. Rev. D78, 062003 (2008)ADSGoogle Scholar
  93. 93.
    L. Rezzolla, L. Baiotti, B. Giacomazzo, D. Link, J.A. Font, Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines. Class. Quant. Grav. 27, 114105 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    L. Santamaria et al., Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries. Phys. Rev. D82, 064016 (2010)ADSGoogle Scholar
  95. 95.
    J.D. Schnittman, Electromagnetic counterparts to black hole mergers. Class. Quant. Grav. 28, (9), 094021 (2011)Google Scholar
  96. 96.
    B.F. Schutz, Determining the hubble constant from gravitational wave observations. Nature 323, 310–311 (1986)ADSCrossRefGoogle Scholar
  97. 97.
    M. Shibata, K. Taniguchi, Merger of black hole and neutron star in general relativity: tidal disruption, torus mass, and gravitational waves. Phys. Rev. D77, 084015 (2008)ADSGoogle Scholar
  98. 98.
    M. Shibata, K. Uryu, Merger of black hole – neutron star binaries: nonspinning black hole case. Phys. Rev. D74, 121503 (2006)ADSGoogle Scholar
  99. 99.
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)ADSGoogle Scholar
  100. 100.
    The auriga detector.
  101. 101.
    The einstein telescope.
  102. 102.
    The explorer and nautilus detectors.
  103. 103.
    The geo600 collaboration.
  104. 104.
    The laser interferometer space antenna.
  105. 105.
    The ligo scientific collaboration.
  106. 106.
  107. 107.
  108. 108.
  109. 109.
    The square kilometer array.
  110. 110.
    The tama collaboration.
  111. 111.
    The virgo collaboration.
  112. 112.
    K. Thorne, Black Holes and Time Warps, 1st edn. (W.W. Norton & Company, New York, 1994)MATHGoogle Scholar
  113. 113.
    M. Tsang, C.M. Caves, Coherent quantum-noise cancellation for optomechanical Sensors. Phys. Rev. Lett. 105, 123601 (2010)ADSCrossRefGoogle Scholar
  114. 114.
    H. Vahlbruch et al., Demonstration of a squeezed light enhanced power-and signal-recycled Michelson interferometer. Phys. Rev. Lett. 95, 211102 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    H. Vahlbruch et al., Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, 011101 (2006)ADSCrossRefGoogle Scholar
  116. 116.
    J. Weber, Detection and generation of gravitational waves. Phys. Rev. 117, 306–313 (1960)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Maryland Center for Fundamental Physics & Joint Space-Science Institute, Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations