Being an Astronomer: A Testimony

Chapter
Part of the Integrated Science & Technology Program book series (ISTP, volume 1)

Abstract

In this short essay, I examine how and why I became an astronomer and what finally this job has brought to my life. I believe that an irresistible compulsion to better understand the sky has driven my observational work. After my beginnings in solar astronomy, I bet on the rise of solid state technology and, in this way, I was among the first to observe the deep Universe with CCD detectors on a large telescope. This path led me almost naturally to observations of strong and weak lensing of faint distant galaxies by foreground structures. With a short overview of the story of gravitational arcs, I illustrate how astronomy might develop through the opening of new observational windows. To increase our knowledge of the Universe astronomers must be “big builders” and have also a profound expertise in many fields of physics. With large telescopes astounding discoveries have been made, but at the same time these findings have come close to the limits of human logic in trying to understand the true essence of the world and its origin. Thus satisfying a compulsive search for meaning was both for me a source of satisfaction and some disappointment. If being an astronomer brought me moments of happiness it was not always where I initially expected to find them, but rather in friendships created in the collective adventure in search of knowledge. My essay concludes with a personal and probably naive remark concerning how employment in astronomy might change as well as with a few worries if we do not succeed in gaining a better understanding of the role our minds play in constructing our collective human beliefs.

Keywords

History and philosophy of astronomy Gravitational lensing Instrumentation: detectors 

Notes

Acknowledgements

Bernard Fort thanks Observatoire de Paris, Observatoire Midi-Pyrénées in Toulouse and Institut d’Astrophysique de Paris for a strong support and a warm hospitality during his career. Many thanks to Henry McCracken, to Hervé Chamley and to the editor for a careful reading of the manuscript which makes this paper more understandable to English speakers, to Jean-Francois Sygnet for comments and technical support and to Jean-Paul Kneib for the use of a recent but spectacular image of the cluster A370.

References

  1. 1.
    G.O. Abell, C.E. Seligman, The distribution of clusters of galaxies. Astron. J. 70, 317\(-+\) (1965). doi:10.1086/109528Google Scholar
  2. 2.
    C.E. Bacon, D.M. Goldberg, B.T.P. Rowe, A.N. Taylor, Weak gravitational flexion. Mon. Not. R. Astron. Soc. 365, 414–428 (2006). doi:10.1111/j.1365-2966.2005.09624.xADSCrossRefGoogle Scholar
  3. 3.
    J. Barnes, Nothing To Be Frightened Of (Knopf, New York, 2008)Google Scholar
  4. 4.
    M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001). doi:10.1016/S0370-1573(00)00082-XMATHGoogle Scholar
  5. 5.
    F. Bernardeau, L. van Waerbeke, Y. Mellier, Weak lensing statistics as a probe of {OMEGA} and power spectrum. Astron. Astrophys. 322, 1–18 (1997)ADSGoogle Scholar
  6. 6.
    F. Bernardeau, C. Bonvin, F. Vernizzi, Full-Sky lensing shear at second order. ArXiv e-prints, [arXiv:0911.2244] (2009)Google Scholar
  7. 7.
    R.D. Blandford, C.S. Kochanek, Gravitational lenses. in Dark Matter in the Universe, ed. by J.N. Bahcall, T. Piran, S. Weinberg (World Scientific, Singapore, 1987), p. 133Google Scholar
  8. 8.
    R.D. Blandford, A.B. Saust, T.G. Brainerd, J.V. Villumsen, The distortion of distant galaxy images by large-scale structure. Mon. Not. R. Astron. Soc. 251, 600–627 (1991)ADSGoogle Scholar
  9. 9.
    J.V. Bolton, S. Burles, L.V.E. Koopmans, T. Treu, R. Gavazzi, L.A. Moustakas, R. Wayth, D.J. Schlegel, The sloan lens ACS survey. V. The full ACS strong-lens sample. Astrophys. J. 682, 964–984 (2008). doi:10.1086/589327ADSGoogle Scholar
  10. 10.
    H. Bonnet, Y. Mellier, B. Fort, First detection of a gravitational weak shear at the periphery of CL 0024+1654. Astrophys. J. 427, L83–L86 (1994). doi:10.1086/187370ADSCrossRefGoogle Scholar
  11. 11.
    A. Bouere, J. Cretolle, B. Fort, R. Jouan, M. Gorisse, A. Lecomte, Y. Rio, L. Vigroux, Description and preliminary performance of a charge-coupled device/CCD/camera. Presented at The Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 290, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (SPIE, Bellingham, 1981), p. 142Google Scholar
  12. 12.
    O. Boulade, X. Charlot, P. Abbon, S. Aune, P. Borgeaud, P. Carton, M. Carty, D. Desforge, D. Eppele, P. Gallais, L. Gosset, R. Granelli, M. Gros, J. de Kat, D. Loiseau, Y. Mellier, J.L. Ritou, J.Y. Rousse, P. Starzynski, N. Vignal, L.G. Vigroux, Development of MegaCam, the next-generation wide-field imaging camera for the 3.6-m Canada-France-Hawaii telescope. Presented at The Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 4008, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. by M. Iye, A. F. Moorwood (SPIE, Bellingham, 2000), pp. 657–668Google Scholar
  13. 13.
    T.G. Brainerd, R.D. Blandford, I. Smail, Weak gravitational lensing by galaxies. Astrophys. J. 466, 623 (1996). doi:10.1086/177537ADSCrossRefGoogle Scholar
  14. 14.
    T. Broadhurst, Gravitational ‘convergence’ and cluster masses. ArXiv e-prints, [astro-ph/ 9511150] (1995)Google Scholar
  15. 15.
    W.L. Burke, Multiple gravitational imaging by distributed masses. Astrophys. J. 244, L1 + (1981). doi:10.1086/183466Google Scholar
  16. 16.
    S. Dehaene, L. Naccache, Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79(1), 1–37 (2001)CrossRefGoogle Scholar
  17. 17.
    G. Edelman, G. Tononi, A Universe of Consciousness: how Matter Becomes Imagination (Basic Books, New York, 2001)Google Scholar
  18. 18.
    B. Fort, Y. Mellier, Arc(let)s in clusters of galaxies. Astron. Astrophys. Rev. 5, 239–292 (1994). doi:10.1007/BF00877691ADSCrossRefGoogle Scholar
  19. 19.
    B. Fort, Y. Mellier, M. Dantel-Fort, H. Bonnet, J.P. Kneib, Observations of weak lensing in the fields of luminous radio sources. Astron. Astrophys. 310, 705–714 (1996)ADSGoogle Scholar
  20. 20.
    B. Fort, Y. Mellier, J.P. Picat, Y. Rio, G. Lelievre, Multiaperture spectroscopy with rapid mask fabrication and installation. Presented at The Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 627, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. by D. L. Crawford (SPIE, Bellingham, 1986), pp. 321–327Google Scholar
  21. 21.
    B. Fort, C. Morel, G. Spaak, The reduction of scattered light in an external occulting disk coronagraph. Astron. Astrophys. 63, 243–246 (1978)ADSGoogle Scholar
  22. 22.
    B. Fort, J.P. Picat, M. Dantel, J.L. Leroy, Coronal densities and temperatures derived from monochromatic images in the red and green lines. Astron. Astrophys. 24, 267 (1973)ADSGoogle Scholar
  23. 23.
    B. Fort, J.L. Prieur, G. Mathez, Y. Mellier, G. Soucail, Faint distorted structures in the core of A 370 – are they gravitationally lensed galaxies at Z about 1? Astron. Astrophys. 200, L17–L20 (1988)ADSGoogle Scholar
  24. 24.
    R. Gavazzi, T. Treu, J.D. Rhodes, L.V.E. Koopmans, A.S. Bolton, S. Burles, R.J. Massey, L.A. Moustakas, The sloan lens ACS survey. IV. The mass density profile of early-type galaxies out to 100 effective radii. Astrophys. J. 667, 176–190 (2007). doi:10.1086/519237Google Scholar
  25. 25.
    H. Hoekstra, Y. Mellier, L. van Waerbeke, E. Semboloni, L. Fu, M.J. Hudson, L.C. Parker, I. Tereno, K. Benabed, First cosmic shear results from the Canada-France-Hawaii telescope wide synoptic legacy survey. Astrophys. J. 647, 116–127 (2006). doi:10.1086/503249ADSCrossRefGoogle Scholar
  26. 26.
    H. Hoekstra, H.K.C. Yee, M.D. Gladders, Properties of galaxy dark matter Halos from weak lensing. Astrophys. J. 606, 67–77 (2004). doi:10.1086/382726ADSCrossRefGoogle Scholar
  27. 27.
    N. Kaiser, Nonlinear cluster lens reconstruction. Astrophys. J. 439, L1–L3 (1995). doi: 10. 1086/187730ADSGoogle Scholar
  28. 28.
    N. Kaiser, G. Squires, Mapping the dark matter with weak gravitational lensing. Astrophys. J. 404, 441–450 (1993). doi:10.1086/172297ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Kneib, Y. Mellier, B. Fort, G. Mathez, The distribution of dark matter in sistant cluster lenses – modelling A:370. Astron. Astrophys. 273, 367 (1993)ADSGoogle Scholar
  30. 30.
    C.S. Kochanek, R.D. Blandford, Gravitaional imaging by isolated elliptical potential wells. II. Probability distributions. Astrophys. J. 321, 676 (1987). doi:10.1086/165661CrossRefGoogle Scholar
  31. 31.
    L.V.E. Koopmans, T. Treu, A.S. Bolton, S. Burles, L.A. Moustakas, The sloan lens ACS survey. III. The structure and formation of early-type galaxies and their evolution since z˜1. Astrophys. J. 649, 599–615 (2006). doi:10.1086/505696Google Scholar
  32. 32.
    I. Kovner, The marginal gravitational lensing. Astrophys. J. 321, 686–705 (1987). doi:10.1086/ 165662CrossRefGoogle Scholar
  33. 33.
    R. Lynds, V. Petrosian, Luminous arcs in clusters of galaxies. Astrophys. J. 336, 1–8 (1989). doi:10.1086/166989ADSCrossRefGoogle Scholar
  34. 34.
    R. Massey, J. Rhodes, A. Leauthaud, P. Capak, R. Ellis, A. Koekemoer, A. Réfrégier, N. Scoville, J.E. Taylor, J. Albert, J. Bergé, C. Heymans, D. Johnston, J. Kneib, Y. Mellier, B. Mobasher, E. Semboloni, P. Shopbell, L. Tasca, L. Van Waerbeke, COSMOS: three-dimensional weak lensing and the growth of structure. Astrophys. J. Suppl. 172, 239–253 (2007). doi:10.1086/516599ADSCrossRefGoogle Scholar
  35. 35.
    Y. Mellier, Probing the universe with weak lensing. Ann. Rev. Astron. Astrophys. 37, 127–189 (1999). doi:10.1146/annurev.astro.37.1.127ADSCrossRefGoogle Scholar
  36. 36.
    Y. Mellier, B. Fort, J. Kneib, The dark matter distribution in MS 2137-23 from the modeling of the multiple arc systems. Astrophys. J. 407, 33–45 (1993). doi:10.1086/172490ADSCrossRefGoogle Scholar
  37. 37.
    J. Miralda-Escude, Gravitational lensing by clusters of galaxies – constraining the mass distribution. Astrophys. J. 370, 1–14 (1991). doi:10.1086/169789ADSCrossRefGoogle Scholar
  38. 38.
    R. Narayan, M. Bartelmann, Lectures on gravitational lensing. ArXiv e-prints, [astro-ph/ 9606001] (1996)Google Scholar
  39. 39.
    B. Paczynski, Giant luminous arcs discovered in two clusters of galaxies. Nature 325, 572–573 (1987). doi:10.1038/325572a0ADSCrossRefGoogle Scholar
  40. 40.
    A. Refregier, Weak gravitational lensing by large-scale structure. Ann. Rev. Astron. Astrophys. 41, 645–668 (2003). doi:10.1146/annurev.astro.41.111302.102207ADSCrossRefGoogle Scholar
  41. 41.
    A. Refregier, The dark UNiverse explorer (DUNE): proposal to ESA’s cosmic vision. Exp. Astron. 23, 17–37 (2009). doi:10.1007/s10686-008-9106-9ADSCrossRefGoogle Scholar
  42. 42.
    S. Refsdal, The gravitational lens effect. Mon. Not. R. Astron. Soc. 128, 295 (1964)MathSciNetADSMATHGoogle Scholar
  43. 43.
    P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer, Berlin/Heidelberg/New York, 1992)CrossRefGoogle Scholar
  44. 44.
    P. Schneider, C. Seitz, Steps towards nonlinear cluster inversion through gravitational distortions. 1: basic considerations and circular clusters. Astron. Astrophys. 294, 411–431 (1995)Google Scholar
  45. 45.
    P. Schneider, L. van Waerbeke, Y. Mellier, B. Jain, S. Seitz, B. Fort, Detection of shear due to weak lensing by large-scale structure. Astron. Astrophys. 333, 767–778 (1998)ADSGoogle Scholar
  46. 46.
    G. Soucail, B. Fort, Y. Mellier, J.P. Picat, A blue ring-like structure, in the center of the A 370 cluster of galaxies. Astron. Astrophys. 172, L14–L16 (1987)ADSGoogle Scholar
  47. 47.
    G. Soucail, Y. Mellier, B. Fort, G. Mathez, M. Cailloux, The giant arc in A 370 – spectroscopic evidence for gravitational lensing from a source at Z = 0.724. Astron. Astrophys. 191, L19–L21 (1988)Google Scholar
  48. 48.
    M. Tompsett, G. Amelio, W. Bertram, R. Buckley, W. McNamara, J. Mikkelsen, D. Sealer, Charge-coupled imaging devices: experimental results. IEEE T. Electron. Dev. 18, 992–996 (1971). doi:10.1109/T-ED.1971.17321CrossRefGoogle Scholar
  49. 49.
    W.H. Tucker, H. Tananbaum, R.A. Remillard, A search for ‘failed clusters’ of galaxies. Astrophys. J. 444, 532–547 (1995). doi:10.1086/175627ADSCrossRefGoogle Scholar
  50. 50.
    J.A. Tyson, R.A. Wenk, F. Valdes, Detection of systematic gravitational lens galaxy image alignments – mapping dark matter in galaxy clusters. Astrophys. J. 349, L1–L4 (1990). doi:10.1086/185636ADSCrossRefGoogle Scholar
  51. 51.
    F. Valdes, J.F. Jarvis, J.A. Tyson, Alignment of faint galaxy images – cosmological distortion and rotation. Astrophys. J. 271, 431–441 (1983). doi:10.1086/161210ADSCrossRefGoogle Scholar
  52. 52.
    L. Van Waerbeke, Y. Mellier, T. Erben, J.C. Cuillandre, F. Bernardeau, R. Maoli, E. Bertin, H.J. Mc Cracken, O. Le Fèvre, B. Fort, M. Dantel-Fort, B. Jain, P. Schneider, Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by large-scale structures. Astron. Astrophys. 358, 30–44 (2000)ADSGoogle Scholar
  53. 53.
    D. Walsh, R.F. Carswell, R.J. Weymann, 0957 + 561 A, B – twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979). doi:10.1038/279381a0ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut d’Astrophysique de ParisParisFrance

Personalised recommendations